首页 > 其他分享 >纯粹的思维和经验(pure thought and empirical)

纯粹的思维和经验(pure thought and empirical)

时间:2024-11-26 14:33:31浏览次数:7  
标签:公理 geometry 欧几里得 empirical thought pure 几何学

The axiomatic geometry of Euclid was the model for correct reasoning from at least as early as 300 BC to the mid-1800s. Here was a system of thought that started with basic definitions and axioms and then proceeded to prove theorem after theorem about geometry, all done without any empirical input. It was believed that Euclidean geometry correctly described the space that we live in. Pure thought seemingly told us about the physical world, which is a heady idea for mathematicians. But by the early 1800s, non-Euclidean geometries had been discovered, culminating in the early 1900s in the special and general theory of relativity, by which time it became clear that, since there are various types of geometry, the type of geometry that describes our universe is an empirical question. Pure thought can tell us the possibilities but does not appear able to pick out the correct one.

(For a popular account of this development by a fine mathematician and mathematical gadfly, see Kline's Mathematics and the Search for Knowledge [73].)

Euclid started with basic definitions and attempted to give definitions for his terms. Today, this is viewed as a false start. An axiomatic system starts with a collection of undefined terms and a collection of relations (axioms) among these undefined terms. We can then prove theorems based on these axioms. An axiomatic system "works" if no contradictions occur. Hyperbolic and elliptic geometries were taken seriously when it was shown that any possible contradiction in them could be translated back into a contradiction in Euclidean geometry, which no one seriously believes contains a contradiction. This will be discussed in the appropriate sections of this chapter.

欧几里得的公理几何学从公元前300年左右开始,一直到19世纪中期,都是正确推理的典范。它是一个从基本定义和公理出发,逐步证明几何学定理的思想体系,且完全不依赖任何经验输入。人们相信欧几里得几何学准确地描述了我们生活的空间,似乎纯粹的思维就能告诉我们有关物理世界的真理。对于数学家来说,这是一个非常激动人心的想法。然而,到了19世纪初,非欧几里得几何学被发现,并在20世纪初通过狭义和广义相对论达到了顶峰。此时人们意识到,由于存在多种几何学,哪种几何学描述我们的宇宙成了一个经验问题。纯粹的思维可以告诉我们各种可能性,但似乎无法选择出正确的那一种。
欧几里得从基本定义开始,并试图为他的术语给出定义。如今,这被视为一个错误的开端。一个公理系统应该从一组未定义的术语和这些术语之间的一组关系(即公理)开始。然后,我们可以基于这些公理证明定理。如果没有出现矛盾,那么这个公理系统就被认为是"有效的"。当证明双曲几何和椭圆几何中的任何潜在矛盾都可以转化为欧几里得几何中的矛盾时,这些几何学才被认真对待,而人们普遍认为欧几里得几何学是没有矛盾的。该话题将在本章的相关部分中讨论。

Reference

All the mathematics You missed But Need to Know for Graduate School -Thomas A. Garrity

** 问题:What's the meaning of 'empirical'? And what's the antonym of this word? **

The word empirical refers to knowledge or information obtained through observation, experience, or experiments, rather than theory or pure logic. In science, an empirical approach is one based on practical evidence, such as data from experiments or real-world observations.

For example, in an empirical study, researchers collect actual data to support or refute a hypothesis, as opposed to relying on abstract reasoning alone.

The antonym of empirical is theoretical or speculative. These terms refer to knowledge based on theory, reasoning, or conjecture without direct observation or practical experimentation.

标签:公理,geometry,欧几里得,empirical,thought,pure,几何学
From: https://www.cnblogs.com/guanghui-hua/p/18570124

相关文章

  • EMATM0061: Statistical Computing and Empirical
    Assignment 2EMATM0061:Statistical Computingand Empirical Methods,TB1, 2024IntroductionCreatean R MarkdownforassignmentFirst,itisrecommendedthatyou createa single R Markdown document to include   yoursolutions,withheadings ......
  • 【Preference Learning】Chain of Preference Optimization: Improving Chain-of-Thou
    问题背景在推理过程中使用TOT方式可以增加推理性能,但由于增加了推理次数,导致耗时过大。目前待解决的问题是如何能在推理时既保持很好的推理能力,又保持推理耗时不会过大。本文方法文章提出CPO(ChainofPreferenceOptimization)方式。该方法使用TOT方式来探索推理路径得到......
  • Blender天空预设增强插件:Pure-Sky Pro V6.0.84 Full Pack
    可以在Blender中模拟真实的天空效果,支持Eevee和Cycle渲染器Imagineabeautifulstarryskyonafullmoonnight,asunsetattheseasideorabeautifulsunnyday,withPure-SkyProyoucannowrealizethesedifferentscenesandmuchmore.Blender插件功能多......
  • 宝塔 ftp访问不了的问题 filezilla访问不了Purefpt服务
     在使用filezilla220Youwillbedisconnectedafter15minutesofinactivity. 命令:AUTHTLS 阿里云的端口放开设置:39000,40000是PureFtp服务的被动模式端口放开  修改PureFTp的配置: ForcePassiveIP放开,并配置成自己服务器的外网地址:  ......
  • linux之FTP服务vsftpd和pure-ftpd常用配置
    vsftpdvsftpd介绍部分参考自vsftpd操作手册-完整版-HOsystem-博客园(cnblogs.com)vsftpd认证模式匿名开放模式:是最不安全的一种认证模式,任何人都可以无须密码验证而直接登录到FTP服务器。本地用户模式:是通过Linux系统本地的账户密码信息进行认证的模式,相较于匿名开......
  • Chain-of-Thought Prompting
    Chain-of-ThoughtPromptinghttps://www.promptingguide.ai/zh/techniques/cot#%E9%9B%B6%E6%A0%B7%E6%9C%AC-cot-%E6%8F%90%E7%A4%BA链式思考(CoT)提示图片来源:Wei等人(2022)在Wei等人(2022)中引入的链式思考(CoT)提示通过中间推理步骤实现了复杂的推理能力。您可以将其与少样本......
  • 论文解读——EMNLP2023《Cross-lingual Prompting: Improving Zero-shot Chain-of-Tho
    一、研究背景  本研究聚焦于改进跨语言链式思考(Chain-of-Thought,CoT)推理,这是针对大型语言模型(LLMs)推理过程中的一种技术。传统上,链式思考通过引导模型按步骤生成推理路径,以提高推理任务的准确性。具体来说,零样本链式思考(zero-shotCoT)通过简单的提示,如“Let’sthinks......
  • 解锁LLMs的“思考”能力:Chain-of-Thought(CoT) 技术推动复杂推理的新发展
    解锁LLMs的“思考”能力:Chain-of-Thought(CoT)技术推动复杂推理的新发展1.简介Chain-of-Thought(CoT)是一种改进的Prompt技术,目的在于提升大模型LLMs在复杂推理任务上的表现,如算术推理(arithmeticreasoning)、常识推理(commonsensereasoning)、符号推理(symbolicreasoning)。起......
  • solidity的pure和view的区别
    当你在Solidity中编写智能合约时,你可能会遇到两个关键字:pure和view。这两个关键字用于函数声明,用于指示函数的行为和对区块链状态的访问方式。在本文中,我们将深入探讨pure和view的区别以及它们在Solidity中的使用场景。1.pure函数pure关键字用于声明函数不会访问或......
  • PureBasic是一种基于BASIC语言的编程语言,它提供了一个简单易用的开发环境,旨在帮助开发
    PureBasic是一种基于BASIC语言的编程语言,它提供了一个简单易用的开发环境,旨在帮助开发人员快速创建跨平台的应用程序。PureBasic的特点如下:简单易学:PureBasic的语法类似于传统的BASIC语言,非常容易学习和理解,适合初学者入门。跨平台支持:PureBasic可以在多个操作系统上运行,包括W......