首页 > 其他分享 >01背包问题(经典dp题解)

01背包问题(经典dp题解)

时间:2024-10-30 11:15:43浏览次数:3  
标签:状态 01 容量 int 题解 背包 物品 件物品 dp

有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。

第 ii 件物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。

接下来有 NN 行,每行两个整数 vi,wi,用空格隔开,分别表示第 ii 件物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤1000
0<vi,wi≤1000

输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
8

2.1 版本1 二维
(1)状态f[i][j]定义:前 i个物品,背包容量 j下的最优解(最大价值):

当前的状态依赖于之前的状态,可以理解为从初始状态f[0][0] = 0开始决策,有 N 件物品,则需要 N次决 策,每一次对第 i件物品的决策,状态f[i][j]不断由之前的状态更新而来。
(2)当前背包容量不够(j < v[i]),没得选,因此前 i个物品最优解即为前 i−1个物品最优解:对应代码:f[i][j] = f[i - 1][j]。
(3)当前背包容量够,可以选,因此需要决策选与不选第 i个物品:选:f[i][j] = f[i - 1][j - v[i]] + w[i]。不选:f[i][j] = f[i - 1][j] 。
我们的决策是如何取到最大价值,因此以上两种情况取 max() 。
代码如下:

#include<bits/stdc++.h>

using namespace std;

const int MAXN = 1005;
int v[MAXN];    // 体积
int w[MAXN];    // 价值 
int f[MAXN][MAXN];  // f[i][j], j体积下前i个物品的最大价值 

int main() 
{
    int n, m;   
    cin >> n >> m;
    for(int i = 1; i <= n; i++) 
        cin >> v[i] >> w[i];

    for(int i = 1; i <= n; i++) 
        for(int j = 1; j <= m; j++)
        {
            //  当前背包容量装不进第i个物品,则价值等于前i-1个物品
            if(j < v[i]) 
                f[i][j] = f[i - 1][j];
            // 能装,需进行决策是否选择第i个物品
            else    
                f[i][j] = max(f[i - 1][j], f[i - 1][j - v[i]] + w[i]);
        }           

    cout << f[n][m] << endl;

    return 0;
}
2.2 版本2 一维
将状态f[i][j]优化到一维f[j],实际上只需要做一个等价变形。

为什么可以这样变形呢?我们定义的状态f[i][j]可以求得任意合法的i与j最优解,但题目只需要求得最终状态f[n][m],因此我们只需要一维的空间来更新状态。

(1)状态f[j]定义:N件物品,背包容量j下的最优解。

(2)注意枚举背包容量j必须从m开始。

(3)为什么一维情况下枚举背包容量需要逆序?在二维情况下,状态f[i][j]是由上一轮i - 1的状态得来的,f[i][j]与f[i - 1][j]是独立的。而优化到一维后,如果我们还是正序,则有f[较小体积]更新到f[较大体积],则有可能本应该用第i-1轮的状态却用的是第i轮的状态。

(4)例如,一维状态第i轮对体积为 3
3
 的物品进行决策,则f[7]由f[4]更新而来,这里的f[4]正确应该是f[i - 1][4],但从小到大枚举j这里的f[4]在第i轮计算却变成了f[i][4]。当逆序枚举背包容量j时,我们求f[7]同样由f[4]更新,但由于是逆序,这里的f[4]还没有在第i轮计算,所以此时实际计算的f[4]仍然是f[i - 1][4]。

(5)简单来说,一维情况正序更新状态f[j]需要用到前面计算的状态已经被「污染」,逆序则不会有这样的问题。

状态转移方程为:f[j] = max(f[j], f[j - v[i]] + w[i] 。

for(int i = 1; i <= n; i++) 
    for(int j = m; j >= 0; j--)
    {
        if(j < v[i]) 
            f[i][j] = f[i - 1][j];  // 优化前
            f[j] = f[j];            // 优化后,该行自动成立,可省略。
        else    
            f[i][j] = max(f[i - 1][j], f[i - 1][j - v[i]] + w[i]);  // 优化前
            f[j] = max(f[j], f[j - v[i]] + w[i]);                   // 优化后
    }    
实际上,只有当枚举的背包容量 >= v[i] 时才会更新状态,因此我们可以修改循环终止条件进一步优化。

for(int i = 1; i <= n; i++)
{
    for(int j = m; j >= v[i]; j--)  
        f[j] = max(f[j], f[j - v[i]] + w[i]);

关于状态f[j]的补充说明
二维下的状态定义f[i][j]是前 i件物品,背包容量 j 下的最大价值。一维下,少了前 i 件物品这个维度,我们的代码中决策到第 i 件物品(循环到第i轮),f[j]就是前i轮已经决策的物品且背包容量 j下的最大价值。因此当执行完循环结构后,由于已经决策了所有物品,f[j]就是所有物品背包容量 j下的最大价值。即一维f[j]等价于二维f[n][j]。

2.3 版本3 优化输入
我们注意到在处理数据时,我们是一个物品一个物品,一个一个体积的枚举。

因此我们可以不必开两个数组记录体积和价值,而是边输入边处理。

#include<bits/stdc++.h>

using namespace std;

const int MAXN = 1005;
int f[MAXN];  // 

int main() 
{
    int n, m;   
    cin >> n >> m;

    for(int i = 1; i <= n; i++) {
        int v, w;
        cin >> v >> w;      // 边输入边处理
        for(int j = m; j >= v; j--)
            f[j] = max(f[j], f[j - v] + w);
    }

    cout << f[m] << endl;

    return 0;
}

 

标签:状态,01,容量,int,题解,背包,物品,件物品,dp
From: https://blog.csdn.net/weixin_72525373/article/details/143283565

相关文章

  • 2024湖南省赛题解(不全)
    湖南省赛K题题意你可以免费移动经过一条边,求在满足在任意点开始都能成功渡劫的最小花费。思路建一个虚拟源点,连向每一个点,将这条边的边权设为这个点渡劫需要的花费。跑最短路,这样会把每一种情况囊括在内,但是没有考虑免费的移动。建一个dist2数组,用来记录每一个点当前......
  • L1-015 c语言跟奥巴马一起画方块
    美国总统奥巴马不仅呼吁所有人都学习编程,甚至以身作则编写代码,成为美国历史上首位编写计算机代码的总统。2014年底,为庆祝“计算机科学教育周”正式启动,奥巴马编写了很简单的计算机代码:在屏幕上画一个正方形。现在你也跟他一起画吧!输入格式:输入在一行中给出正方形边长N(3≤N≤2......
  • [一直更新中]一句话题解
    目录一句话题解2024.10.29AT_abc290_fAT_arc156_c2024.10.30P5749[IOI2019]排列鞋子AT_abc285_e一句话题解不能什么题都随便写写就过了,留点印象好一点。一直更新。2024.10.29AT_abc290_f组合数数。满足树的形态要有\(\sumdeg_i=2n-2\)。考虑目前有\(k\)个儿子节点,直径......
  • 易优cms系统报错unserialize(): Error at offset 0 of 1571 bytes_Eyoucms系统报错问
    解决方案清除缓存通过FTP访问服务器。导航至 /data/runtime 目录。删除该目录下的所有文件和文件夹。升级系统登录后台。检查是否有可用的更新。升级到最新版本,以确保已知的问题已被修复。检查代码如果问题仍然存在,可以检查 \corelibrary\think\cache\dri......
  • Educational Codeforces Round 171 (Rated for Div. 2) 10.28 ABCD题解
    EducationalCodeforcesRound171(RatedforDiv.2)10.28(ABCD)题解A.PerpendicularSegments数学(math)计算几何(geometry)题意:给定一个\(X,Y,K\)。需要求解出二维坐标系中的四个点\(A,B,C,D\),满足:\(0\leqA_x,B_x,C_x,D_x\leqX\),\(0\leqA_y,B_y,C_y,D_y\leqY\)。并......
  • 【linux网络编程】| socket套接字 | 实现UDP协议聊天室
        前言:本节内容将带友友们实现一个UDP协议的聊天室。主要原理是客户端发送数据给服务端。服务端将数据再转发给所有链接服务端的客户端。所以,我们主要就是要实现客户端以及服务端的逻辑代码。那么,接下来开始我们的学习吧。    ps:本节内容建议了解so......
  • 「KTSC 2024 R2」跳跃游戏 题解
    睡了一觉,打呼噜被老胡叫醒了/lh睡醒场切,vectorfind是\(O(size)\)的调了40min/fn思路考虑最终得到了\(\mathcalO(Q)\)个连续的\((len,val)\)代表线段长度和线段的\(A_i\),可以用map简单得到。结论:必然存在一种方案,使得在\((i-K,i]\)中必然存在跳跃的起点......
  • ARC186A 官方题解-ChatGPT翻译
    基于图的重新表述对于一个元素为0或1的\(N\timesN\)矩阵\(A\),考虑从一个完整的二部图构建的有向图。该图的顶点由两部分组成:\((R_1,\dots,R_N)\)和\((C_1,\dots,C_N)\),其边的方向如下:如果\(A_{i,j}=1\),则边从\(R_i\)指向\(C_j\)如果\(A_{i,j}=0\),则边从\(C_i......
  • JY901 ROS1使用经验
    参考:维特智能官方ROSPython使用说明https://wit-motion.yuque.com/wumwnr/ltst03/lu0v13?#0246cb6a安装配置步骤:先在VirtualBox中为这个包配置对应的环境:Ubuntu16.04,ROS(1)Kinetic,Python2.7.按照上面参考链接,从【3.IMU软件包使用】开始一步一步做。使用步骤:1.查看......
  • P9131 [USACO23FEB] Problem Setting P 题解
    P9131[USACO23FEB]ProblemSettingP题解注意到最终形成的困难序列是一个不断包含的子集的关系,包含是非严格单调的,考虑转化为单调的形式易于计数dp。具体地,对于一些相同的困难值\(i\),算出其内部排列数\(g(i)\),于是转化成了单调的dp形式。于是实际上计算\(dp_{i}\)表示......