首页 > 其他分享 >实验6:开源控制器实践——RYU

实验6:开源控制器实践——RYU

时间:2022-10-28 20:59:38浏览次数:59  
标签:控制器 parser datapath port msg 开源 ofproto RYU id

(一)基本要求
1、连接Ryu控制器,通过Ryu的图形界面查看网络拓扑

2、h1 ping h2 的两种抓包情况和流表查看
tcpdump 验证L2Switch:

POX的Hub模块:

3、L2Switch和POX的Hub模块有何不同
L2Switch不能查看下发的流表,POX中Hub模块可以查看。

4、L2Switch.py代码

from ryu.base import app_manager
from ryu.controller import ofp_event
from ryu.controller.handler import MAIN_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.ofproto import ofproto_v1_0

class L2Switch(app_manager.RyuApp):
    OFP_VERSIONS = [ofproto_v1_0.OFP_VERSION]

    def __init__(self, *args, **kwargs):
        super(L2Switch, self).__init__(*args, **kwargs)

    @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
    def packet_in_handler(self, ev):
        msg = ev.msg
        dp = msg.datapath
        ofp = dp.ofproto
        ofp_parser = dp.ofproto_parser

        actions = [ofp_parser.OFPActionOutput(ofp.OFPP_FLOOD)]

        data = None
        if msg.buffer_id == ofp.OFP_NO_BUFFER:
             data = msg.data

        out = ofp_parser.OFPPacketOut(
            datapath=dp, buffer_id=msg.buffer_id, in_port=msg.in_port,
            actions=actions, data = data)
        dp.send_msg(out)

L2212003178.py代码

from ryu.base import app_manager
from ryu.controller import ofp_event
from ryu.controller.handler import MAIN_DISPATCHER
from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.ofproto import ofproto_v1_3

class L2Switch(app_manager.RyuApp):
    OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]

    def __init__(self, *args, **kwargs):
        super(L2Switch, self).__init__(*args, **kwargs)

    @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
    def switch_features_handler(self, ev):
        datapath = ev.msg.datapath
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser

        # install table-miss flow entry
        #
        # We specify NO BUFFER to max_len of the output action due to
        # OVS bug. At this moment, if we specify a lesser number, e.g.,
        # 128, OVS will send Packet-In with invalid buffer_id and
        # truncated packet data. In that case, we cannot output packets
        # correctly.  The bug has been fixed in OVS v2.1.0.
        match = parser.OFPMatch()
        actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,
                                          ofproto.OFPCML_NO_BUFFER)]
        self.add_flow(datapath, 0, match, actions)

    def add_flow(self, datapath, priority, match, actions, buffer_id=None):
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser

        inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,
                                             actions)]
        if buffer_id:
            mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id,
                                    priority=priority, match=match,
                                    instructions=inst)
        else:
            mod = parser.OFPFlowMod(datapath=datapath, priority=priority,
                                    match=match, instructions=inst)
        datapath.send_msg(mod)

    @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
    def packet_in_handler(self, ev):
        msg = ev.msg
        dp = msg.datapath
        ofp = dp.ofproto
        ofp_parser = dp.ofproto_parser
        in_port = msg.match['in_port']

        actions = [ofp_parser.OFPActionOutput(ofp.OFPP_FLOOD)]

        data = None
        if msg.buffer_id == ofp.OFP_NO_BUFFER:
             data = msg.data

        out = ofp_parser.OFPPacketOut(
            datapath=dp, buffer_id=msg.buffer_id, in_port=in_port,
            actions=actions, data = data)
        dp.send_msg(out)

5、运行L2212003178.py,可以查看流表

(二)进阶要求
1、阅读Ryu关于simple_switch.py和simple_switch_1x.py的实现,以simple_switch_13.py为例,完成其代码的注释工作,并回答下列问题:
simple_switch_13.py代码

# Copyright (C) 2011 Nippon Telegraph and Telephone Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.

#进入各类包
from ryu.base import app_manager
from ryu.controller import ofp_event
from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.ofproto import ofproto_v1_3
from ryu.lib.packet import packet
from ryu.lib.packet import ethernet
from ryu.lib.packet import ether_types


class SimpleSwitch13(app_manager.RyuApp):
  OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]#定义openflow的版本为1.3

  def __init__(self, *args, **kwargs):
      super(SimpleSwitch13, self).__init__(*args, **kwargs)# 定义保存mac地址到端口的映射,self.mac_to_port是mac地址映射到转发端口的字典。
      self.mac_to_port = {}
# 处理EventOFPSwitchFeatures事件
  @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
  def switch_features_handler(self, ev): #ev.msg 是用来存储对应事件的 OpenFlow 消息类别实体
      datapath = ev.msg.datapath # ofproto表示使用的OpenFlow版本所对应的ryu.ofproto.ofproto_v1_3
      ofproto = datapath.ofproto # 使用对应版本的ryu.ofproto.ofproto_v1_3_parser来解析协议
      parser = datapath.ofproto_parser

      # install table-miss flow entry
      #
      # We specify NO BUFFER to max_len of the output action due to
      # OVS bug. At this moment, if we specify a lesser number, e.g.,
      # 128, OVS will send Packet-In with invalid buffer_id and
      # truncated packet data. In that case, we cannot output packets
      # correctly.  The bug has been fixed in OVS v2.1.0.
      match = parser.OFPMatch()
      actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,
                                        ofproto.OFPCML_NO_BUFFER)]
      self.add_flow(datapath, 0, match, actions) # priority = 0表示优先级最低,即若所有流表都匹配不到时,才会把数据包发送到controller
# 执行 add_flow() 方法以发送 Flow Mod 消息
# 添加流表函数
  def add_flow(self, datapath, priority, match, actions, buffer_id=None):
      ofproto = datapath.ofproto
      parser = datapath.ofproto_parser
# 获取交换机信息
      inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,
                                           actions)]# 对action进行包装
# 判断是否有buffer_id,并生成mod对象
      if buffer_id:
          mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id,
                                  priority=priority, match=match,
                                  instructions=inst)
      else:
          mod = parser.OFPFlowMod(datapath=datapath, priority=priority,
                                  match=match, instructions=inst)
      datapath.send_msg(mod) # 发送mod
# 处理 packet in 事件
  @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
  def _packet_in_handler(self, ev):
      # If you hit this you might want to increase
      # the "miss_send_length" of your switch
      if ev.msg.msg_len < ev.msg.total_len:
          self.logger.debug("packet truncated: only %s of %s bytes",
                            ev.msg.msg_len, ev.msg.total_len)
# 获取包信息,交换机信息,协议等等
      msg = ev.msg
      datapath = msg.datapath
      ofproto = datapath.ofproto
      parser = datapath.ofproto_parser
      in_port = msg.match['in_port']

      pkt = packet.Packet(msg.data)
      eth = pkt.get_protocols(ethernet.ethernet)[0]

      if eth.ethertype == ether_types.ETH_TYPE_LLDP:
          # ignore lldp packet # 忽略LLDP类型的数据包
          return
# 获取源端口,目的端口
      dst = eth.dst
      src = eth.src

      dpid = format(datapath.id, "d").zfill(16)
      self.mac_to_port.setdefault(dpid, {})

      self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port)
# 学习包的源地址和交换机上的入端口绑定
#dpid是交换机的id,src是数据包的源mac地址,in_port是交换机接受到包的端口
      # learn a mac address to avoid FLOOD next time.
      self.mac_to_port[dpid][src] = in_port
# 查看是否已经学习过该目的mac地址
#如果已经学习到,则向交换机下发流表,并让交换机向相应端口转发包
      if dst in self.mac_to_port[dpid]:
          out_port = self.mac_to_port[dpid][dst]
      # 如果没有,则无法下发流表,进行洪泛转发
      else:
          out_port = ofproto.OFPP_FLOOD

      actions = [parser.OFPActionOutput(out_port)]
# 下发流表处理后续包,不再触发PACKETIN事件
      # install a flow to avoid packet_in next time
      if out_port != ofproto.OFPP_FLOOD:
          match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src)
          # verify if we have a valid buffer_id, if yes avoid to send both
          # flow_mod & packet_out
#buffer_id不为None,控制器只需下发流表的命令,交换机增加了流表项后,位于缓冲区的数据包,会自动转发出去。
          if msg.buffer_id != ofproto.OFP_NO_BUFFER:
              self.add_flow(datapath, 1, match, actions, msg.buffer_id)
              return
#buffer_id为None,则控制器不仅要更改交换机的流表项,还要把数据包的信息传给交换机,让交换机把数据包转发出去。
          else:
              self.add_flow(datapath, 1, match, actions)
      data = None
      if msg.buffer_id == ofproto.OFP_NO_BUFFER:
          data = msg.data

      out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,
                                in_port=in_port, actions=actions, data=data)
      datapath.send_msg(out)# 发送流表
 

a) 代码当中的mac_to_port的作用是什么?

自学习交换机需要控制器来维护交换机的帧交换表,帧交换便就是mac地址与端口号的对应关系
如果目的mac的对应端口已经知道,就直接设置为输出端口,否则就洪泛

b) simple_switch和simple_switch_13在dpid的输出上有何不同?

simple_switch是直接输出dpid,而simple_switch_13是在dpid前端填充0直至满16位

c) 相比simple_switch,simple_switch_13增加的switch_feature_handler实现了什么功能?

新增缺失流表项到流表中,当封包没有匹配到流表时,就触发packet_in

d) simple_switch_13是如何实现流规则下发的?

在接收到packetin事件后,首先获取包学习,交换机信息,以太网信息,协议信息等。如果以太网类型是LLDP类型,则不予处理。否则,获取源端口的目的端口和交换机的id,先学习源地址对应的交换机的入端口,再查看是否已经学习目的mac地址。如果没有则进行洪泛转发,否则为学习过该mac地址,那就查看是否有buffer_id,有则在添加流表信息动作时加上buffer_id,向交换机发送流表。

e) switch_features_handler和_packet_in_handler两个事件在发送流规则的优先级上有何不同?

switch_features_handler优先级比_packet_in_handler高。

2、编程实现和ODL实验的一样的硬超时功能。
simple_switch_13_212003178.py代码

# Copyright (C) 2011 Nippon Telegraph and Telephone Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from ryu.base import app_manager
from ryu.controller import ofp_event
from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.ofproto import ofproto_v1_3
from ryu.lib.packet import packet
from ryu.lib.packet import ethernet
from ryu.lib.packet import ether_types


class SimpleSwitch13(app_manager.RyuApp):
  OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]

  def __init__(self, *args, **kwargs):
      super(SimpleSwitch13, self).__init__(*args, **kwargs)
      self.mac_to_port = {}

  @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
  def switch_features_handler(self, ev):
      datapath = ev.msg.datapath
      ofproto = datapath.ofproto
      parser = datapath.ofproto_parser

      # install table-miss flow entry
      #
      # We specify NO BUFFER to max_len of the output action due to
      # OVS bug. At this moment, if we specify a lesser number, e.g.,
      # 128, OVS will send Packet-In with invalid buffer_id and
      # truncated packet data. In that case, we cannot output packets
      # correctly.  The bug has been fixed in OVS v2.1.0.
      match = parser.OFPMatch()
      actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,
                                        ofproto.OFPCML_NO_BUFFER)]
      self.add_flow(datapath, 0, match, actions)

#添加流表函数(执行add_flow()方法以发送flow mod消息)这里加了一个hardtime参数
  def add_flow(self, datapath, priority, match, actions, buffer_id=None, hard_timeout=0):
      ofproto = datapath.ofproto
      parser = datapath.ofproto_parser

      inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,
                                           actions)]
      if buffer_id:
          mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id,
                                  priority=priority, match=match,
                                  instructions=inst, hard_timeout=hard_timeout)
      else:
          mod = parser.OFPFlowMod(datapath=datapath, priority=priority,
                                  match=match, instructions=inst, hard_timeout=hard_timeout)
      datapath.send_msg(mod)

  @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
  def _packet_in_handler(self, ev):
      # If you hit this you might want to increase
      # the "miss_send_length" of your switch
      if ev.msg.msg_len < ev.msg.total_len:
          self.logger.debug("packet truncated: only %s of %s bytes",
                            ev.msg.msg_len, ev.msg.total_len)
      msg = ev.msg
      datapath = msg.datapath
      ofproto = datapath.ofproto
      parser = datapath.ofproto_parser
      in_port = msg.match['in_port']

      pkt = packet.Packet(msg.data)
      eth = pkt.get_protocols(ethernet.ethernet)[0]

      if eth.ethertype == ether_types.ETH_TYPE_LLDP:
          # ignore lldp packet
          return
      dst = eth.dst
      src = eth.src

      dpid = format(datapath.id, "d").zfill(16)
      self.mac_to_port.setdefault(dpid, {})

      self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port)

      # learn a mac address to avoid FLOOD next time.
      self.mac_to_port[dpid][src] = in_port

      if dst in self.mac_to_port[dpid]:
          out_port = self.mac_to_port[dpid][dst]
      else:
          out_port = ofproto.OFPP_FLOOD

      actions = [parser.OFPActionOutput(out_port)]\

      actions_timeout=[]

      # install a flow to avoid packet_in next time
      if out_port != ofproto.OFPP_FLOOD:
          match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src)
          # verify if we have a valid buffer_id, if yes avoid to send both
          # flow_mod & packet_out
          hard_timeout=10 #设置硬超时时间为10s
#buffer_id不为None,控制器只需下发流表的命令同时实现硬超时功能,交换机增加了流表项后,位于缓冲区的数据包,会自动转发出去。
#此条中带有硬超时功能的优先级为2
          if msg.buffer_id != ofproto.OFP_NO_BUFFER:
              self.add_flow(datapath, 2, match,actions_timeout, msg.buffer_id,hard_timeout=10)
              self.add_flow(datapath, 1, match, actions, msg.buffer_id)
              return
#buffer_id为None,则控制器不仅要更改交换机的流表项,还要把数据包的信息传给交换机,让交换机把数据包转发出去。
#此条中带有硬超时功能的优先级为2
          else:
              self.add_flow(datapath, 2, match, actions_timeout, hard_timeout=10)
              self.add_flow(datapath, 1, match, actions)
      data = None
      if msg.buffer_id == ofproto.OFP_NO_BUFFER:
          data = msg.data

      out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,
                                in_port=in_port, actions=actions, data=data)
      datapath.send_msg(out)

(三)实验总结
本次的实验基础要求比较简单,通过阅读Ryu文档的The First Application一节,运行当中的L2Switch,h1 ping h2或h3,在目标主机使用 tcpdump 验证L2Switch,得出L2Switch不可以查看流表和POX的Hub可以查看流表的结论。通过网上查找资料的文同学的方式,了解了更多关于Ryu控制器的知识。进阶要求对我还是有难度的,因为里面需要编写代码,主要是通过网上查找资料和参考同学做出来的。

标签:控制器,parser,datapath,port,msg,开源,ofproto,RYU,id
From: https://www.cnblogs.com/ZWT3178/p/16836239.html

相关文章

  • 实验6:开源控制器实践——RYU
    一、实验目的能够独立部署RYU控制器;能够理解RYU控制器实现软件定义的集线器原理;能够理解RYU控制器实现软件定义的交换机原理。二、实验环境Ubuntu20.04Desktopamd6......
  • 实验6:开源控制器实践——RYU
    实验6:开源控制器实践——RYU一、实验目的能够独立部署RYU控制器;能够理解RYU控制器实现软件定义的集线器原理;能够理解RYU控制器实现软件定义的交换机原理。二、实验环......
  • 实验6:开源控制器实践——RYU
    实验6:开源控制器实践——RYU一、实验目的能够独立部署RYU控制器;能够理解RYU控制器实现软件定义的集线器原理;能够理解RYU控制器实现软件定义的交换机原理。二、实验......
  • 实验6:开源控制器实践——RYU
    (一)基本要求1、搭建下图所示SDN拓扑,协议使用OpenFlow1.0,并连接Ryu控制器,通过Ryu的图形界面查看网络拓扑。sudomn--topo=single,3--mac--controller=remote,ip=127.0......
  • 实验6:开源控制器实践
    实验6:开源控制器实践——RYU一、实验目的能够独立部署RYU控制器;能够理解RYU控制器实现软件定义的集线器原理;能够理解RYU控制器实现软件定义的交换机原理。二、实验环......
  • 实验6_开源控制器实践——Ryu
    一)基本要求1.搭建所示SDN拓扑,协议使用OpenFlow1.0,并连接Ryu控制器,通过Ryu的图形界面查看网络拓扑。·构建拓扑sudomn--topo=single,3--mac--controller=remote,ip......
  • 实验6:开源控制器实践——RYU
    实验6:开源控制器实践——RYU一、实验目的能够独立部署RYU控制器;能够理解RYU控制器实现软件定义的集线器原理;能够理解RYU控制器实现软件定义的交换机原理。二、实验环......
  • 实验6:开源控制器实践——RYU
    (一)基本要求1.搭建下图所示SDN拓扑,协议使用OpenFlow1.0,并连接Ryu控制器,通过Ryu的图形界面查看网络拓扑。1)构建topo:sudomn--topo=single,3--mac--controller=remot......
  • 实验6:开源控制器实践——RYU
    实验6:开源控制器实践——RYU一、实验目的能够独立部署RYU控制器;能够理解RYU控制器实现软件定义的集线器原理;能够理解RYU控制器实现软件定义的交换机原理。二、实验......
  • 实验4:开源控制器实践——OpenDaylight
    实验4:开源控制器实践——OpenDaylight一、实验目的能够独立完成OpenDaylight控制器的安装配置;能够使用Postman工具调用OpenDaylightAPI接口下发流表。二、实验环境......