实验6:开源控制器实践——RYU
一、实验目的
- 能够独立部署RYU控制器;
- 能够理解RYU控制器实现软件定义的集线器原理;
- 能够理解RYU控制器实现软件定义的交换机原理。
二、实验环境
Ubuntu 20.04 Desktop amd64
三、实验要求
(一)基本要求
- 搭建下图所示SDN拓扑,协议使用Open Flow 1.0,并连接Ryu控制器,通过Ryu的图形界面查看网络拓扑。
- 使用命令在lab6中搭建拓扑图:
sudo mn --topo=single,3--mac --controller=remote,ip=127.0.0.1,port=6633--switch ovsk,protocols=OpenFlow10
-
- 使用命令在lab6中搭建拓扑图:
启动控制器
ryu-manager ryu/ryu/app/gui_topology/gui_topology.py --observe-links
通过Ryu的图形界面查看网络拓
2.阅读Ryu文档的The First Application一节,运行当中的L2Switch,h1 ping h2或h3,在目标主机使用 tcpdump 验证L2Switch,分析L2Switch和POX的Hub模块有何不同。
-
- 在lab6中创建L2Switch.py
1 from ryu.base import app_manager 2 from ryu.controller import ofp_event 3 from ryu.controller.handler import MAIN_DISPATCHER 4 from ryu.controller.handler import set_ev_cls 5 from ryu.ofproto import ofproto_v1_0 6 7 class L2Switch(app_manager.RyuApp): 8 OFP_VERSIONS = [ofproto_v1_0.OFP_VERSION] 9 10 def __init__(self, *args, **kwargs): 11 super(L2Switch, self).__init__(*args, **kwargs) 12 13 @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER) 14 def packet_in_handler(self, ev): 15 msg = ev.msg 16 dp = msg.datapath 17 ofp = dp.ofproto 18 ofp_parser = dp.ofproto_parser 19 20 actions = [ofp_parser.OFPActionOutput(ofp.OFPP_FLOOD)] 21 22 data = None 23 if msg.buffer_id == ofp.OFP_NO_BUFFER: 24 data = msg.data 25 26 out = ofp_parser.OFPPacketOut( 27 datapath=dp, buffer_id=msg.buffer_id, in_port=msg.in_port, 28 actions=actions, data = data) 29 dp.send_msg(out)
- 在lab6中创建L2Switch.py
运行ryu:
ryu-manager L2Switch.py
重新搭建拓扑图:
sudo mn --topo=single,3--mac --controller=remote,ip=127.0.0.1,port=6633--switch ovsk,protocols=OpenFlow10
对p1和p2进行抓包,在目标主机中验证验证L2Switch
1.使用命令mininet> xterm h2 h3开启主机终端 2.在h2主机终端中输入tcpdump -nn -i h2-eth0 3.在h3主机终端中输入tcpdump -nn -i h3-eth0
L2Switch和POX的Hub模块的不同
相同之处:两个模块使用的是洪泛转发ICMP报文,所以无论h1 ping h2还是h3,都能收到数据包。
不同之处:L2Switch下发的流表无法在mininet上查看,而Hub可以查看,如图所示
3.编程修改L2Switch.py,另存为L2xxxxxxxxx.py,使之和POX的Hub模块的变得一致?(xxxxxxxxx为学号)
1 from ryu.base import app_manage 2 from ryu.ofproto import ofproto_v1_3 3 from ryu.controller import ofp_event 4 from ryu.controller.handler import MAIN_DISPATCHER,CONFIG_DISPATCHER 5 from ryu.controller.handler import set_ev_cls 6 7 8 class Hub(app_manager.RyuApp): 9 OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION] 10 11 def __init__(self,*args,**kwargs): 12 super(Hub,self).__init__(*args,**kwargs) 13 14 15 @set_ev_cls(ofp_event.EventOFPSwitchFeatures,CONFIG_DISPATCHER) 16 def switch_features_handler(self,ev): 17 datapath = ev.msg.datapath 18 ofproto = datapath.ofproto 19 ofp_parser = datapath.ofproto_parser 20 21 match = ofp_parser.OFPMatch() 22 actions = [ofp_parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,ofproto.OFPCML_NO_BUFFER)] 23 24 self.add_flow(datapath,0,match,actions,"default flow entry") 25 26 def add_flow(self,datapath,priority,match,actions,remind_content): 27 ofproto = datapath.ofproto 28 ofp_parser = datapath.ofproto_parser 29 30 inst = [ofp_parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, 31 actions)] 32 33 mod = ofp_parser.OFPFlowMod(datapath=datapath,priority=priority, 34 match=match,instructions=inst); 35 print("install to datapath,"+remind_content) 36 datapath.send_msg(mod); 37 38 39 @set_ev_cls(ofp_event.EventOFPPacketIn,MAIN_DISPATCHER) 40 def packet_in_handler(self,ev): 41 msg = ev.msg 42 datapath = msg.datapath 43 ofproto = datapath.ofproto 44 ofp_parser = datapath.ofproto_parser 45 46 in_port = msg.match['in_port'] 47 48 print("get packet in, install flow entry,and lookback parket to datapath") 49 50 match = ofp_parser.OFPMatch(); 51 actions = [ofp_parser.OFPActionOutput(ofproto.OFPP_FLOOD)] 52 53 self.add_flow(datapath,1,match,actions,"hub flow entry") 54 55 out = ofp_parser.OFPPacketOut(datapath=datapath,buffer_id=msg.buffer_id, 56 in_port=in_port,actions=actions) 57 58 datapath.send_msg(out);
(二)进阶要求
- 阅读Ryu关于simple_switch.py和simple_switch_1x.py的实现,以simple_switch_13.py为例,完成其代码的注释工作,并回答下列问题:
a) 代码当中的mac_to_port的作用是什么?
答:mac_to_port的作用是保存mac地址到交换机端口的映射。
b) simple_switch和simple_switch_13在dpid的输出上有何不同?
两者的差别在于:simple_switch直接输出dpid,而simple_switch_13则在dpid前端填充0直至满16位
c) 相比simple_switch,simple_switch_13增加的switch_feature_handler实现了什么功能?
实现了交换机以特性应答消息来响应特性请求的功能,switch_features_handler函数是新增缺失流表项到流表中,当封包没有匹配到流表时,就触发packet_in
d) simple_switch_13是如何实现流规则下发的?
在接收到packetin事件后,首先获取包学习,交换机信息,以太网信息,协议信息等。若以太网类型是LLDP类型,则不予处理。如果不是,则获取源端口的目的端口和交换机id,先学习源地址对应的交换机的入端口,再查看是否已经学习目的mac地址,如果没有则进行洪泛转发。如果学习过该mac地址,则查看是否有buffer_id,如果有的话,则在添加流表信息时加上buffer_id,向交换机发送流表。
e) switch_features_handler和_packet_in_handler两个事件在发送流规则的优先级上有何不同?
switch_features_handler下发流表的优先级比_packet_in_handler的优先级高。
1 # Copyright (C) 2011 Nippon Telegraph and Telephone Corporation. 2 # 3 # Licensed under the Apache License, Version 2.0 (the "License"); 4 # you may not use this file except in compliance with the License. 5 # You may obtain a copy of the License at 6 # 7 # http://www.apache.org/licenses/LICENSE-2.0 8 # 9 # Unless required by applicable law or agreed to in writing, software 10 # distributed under the License is distributed on an "AS IS" BASIS, 11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 12 # implied. 13 # See the License for the specific language governing permissions and 14 # limitations under the License. 15 16 from ryu.base import app_manager 17 from ryu.controller import ofp_event 18 from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER 19 from ryu.controller.handler import set_ev_cls 20 from ryu.ofproto import ofproto_v1_3 21 from ryu.lib.packet import packet 22 from ryu.lib.packet import ethernet 23 from ryu.lib.packet import ether_types 24 # 引入包 25 26 class SimpleSwitch13(app_manager.RyuApp): 27 28 OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION] 29 # 定义openflow版本 30 def __init__(self, *args, **kwargs): 31 super(SimpleSwitch13, self).__init__(*args, **kwargs) 32 # 定义保存mac地址到端口的一个映射 33 self.mac_to_port = {} 34 35 # 处理SwitchFeatures事件 36 @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER) 37 def switch_features_handler(self, ev): 38 datapath = ev.msg.datapath 39 ofproto = datapath.ofproto 40 parser = datapath.ofproto_parser 41 42 # install table-miss flow entry 43 # We specify NO BUFFER to max_len of the output action due to 44 # OVS bug. At this moment, if we specify a lesser number, e.g., 45 # 128, OVS will send Packet-In with invalid buffer_id and 46 # truncated packet data. In that case, we cannot output packets 47 # correctly. The bug has been fixed in OVS v2.1.0. 48 match = parser.OFPMatch() 49 actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,ofproto.OFPCML_NO_BUFFER)] 50 self.add_flow(datapath, 0, match, actions) 51 52 # 添加流表的函数 53 def add_flow(self, datapath, priority, match, actions, buffer_id=None): 54 ofproto = datapath.ofproto 55 parser = datapath.ofproto_parser 56 # 获取交换机信息 57 58 inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,actions)] 59 # 对action进行包装 60 61 # 判断是否有buffer_id,并生成mod对象 62 if buffer_id: 63 mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id, 64 priority=priority, match=match, 65 instructions=inst) 66 else: 67 mod = parser.OFPFlowMod(datapath=datapath, priority=priority, 68 match=match, instructions=inst) 69 70 datapath.send_msg(mod)# 发送mod 71 72 # 处理PacketIn事件 73 @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER) 74 def _packet_in_handler(self, ev): 75 # If you hit this you might want to increase 76 # the "miss_send_length" of your switch 77 if ev.msg.msg_len < ev.msg.total_len: 78 self.logger.debug("packet truncated: only %s of %s bytes", 79 ev.msg.msg_len, ev.msg.total_len) 80 81 msg = ev.msg 82 datapath = msg.datapath 83 ofproto = datapath.ofproto 84 parser = datapath.ofproto_parser 85 in_port = msg.match['in_port'] 86 # 获取包信息,交换机信息,协议等等 87 88 pkt = packet.Packet(msg.data) 89 eth = pkt.get_protocols(ethernet.ethernet)[0] 90 91 if eth.ethertype == ether_types.ETH_TYPE_LLDP: 92 # ignore lldp packet# 忽略LLDP类型的数据包 93 return 94 95 # 获取源端口,目的端口 96 dst = eth.dst 97 src = eth.src 98 99 dpid = format(datapath.id, "d").zfill(16) 100 self.mac_to_port.setdefault(dpid, {}) 101 102 self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port) 103 104 # 学习包的源地址,和交换机上的入端口绑定 105 # learn a mac address to avoid FLOOD next time. 106 self.mac_to_port[dpid][src] = in_port 107 108 # 查看是否已经学习过该目的mac地址 109 if dst in self.mac_to_port[dpid]: 110 out_port = self.mac_to_port[dpid][dst] 111 # 如果没有则进行洪泛 112 else: 113 out_port = ofproto.OFPP_FLOOD 114 115 actions = [parser.OFPActionOutput(out_port)] 116 117 # 下发流表处理后续包,不再触发PACKETIN事件 118 # install a flow to avoid packet_in next time 119 if out_port != ofproto.OFPP_FLOOD: 120 match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src) 121 # verify if we have a valid buffer_id, if yes avoid to send both 122 # flow_mod & packet_out 123 if msg.buffer_id != ofproto.OFP_NO_BUFFER: 124 self.add_flow(datapath, 1, match, actions, msg.buffer_id) 125 return 126 else: 127 self.add_flow(datapath, 1, match, actions) 128 data = None 129 if msg.buffer_id == ofproto.OFP_NO_BUFFER: 130 data = msg.data 131 132 out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id, 133 in_port=in_port, actions=actions, data=data) 134 # 发送流表 135 datapath.send_msg(out)
2、编程实现和ODL实验的一样的硬超时功能。
1 from ryu.base import app_manager 2 from ryu.controller import ofp_event 3 from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER 4 from ryu.controller.handler import set_ev_cls 5 from ryu.ofproto import ofproto_v1_3 6 from ryu.lib.packet import packet 7 from ryu.lib.packet import ethernet 8 from ryu.lib.packet import ether_types 9 10 11 class SimpleSwitch13(app_manager.RyuApp): 12 OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION] 13 14 def __init__(self, *args, **kwargs): 15 super(SimpleSwitch13, self).__init__(*args, **kwargs) 16 self.mac_to_port = {} 17 18 @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER) 19 def switch_features_handler(self, ev): 20 datapath = ev.msg.datapath 21 ofproto = datapath.ofproto 22 parser = datapath.ofproto_parser 23 24 match = parser.OFPMatch() 25 actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER, 26 ofproto.OFPCML_NO_BUFFER)] 27 self.add_flow(datapath, 0, match, actions) 28 29 def add_flow(self, datapath, priority, match, actions, buffer_id=None, hard_timeout=0): 30 ofproto = datapath.ofproto 31 parser = datapath.ofproto_parser 32 33 inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, 34 actions)] 35 if buffer_id: 36 mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id, 37 priority=priority, match=match, 38 instructions=inst, hard_timeout=hard_timeout) 39 else: 40 mod = parser.OFPFlowMod(datapath=datapath, priority=priority, 41 match=match, instructions=inst, hard_timeout=hard_timeout) 42 datapath.send_msg(mod) 43 44 @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER) 45 def _packet_in_handler(self, ev): 46 # If you hit this you might want to increase 47 # the "miss_send_length" of your switch 48 if ev.msg.msg_len < ev.msg.total_len: 49 self.logger.debug("packet truncated: only %s of %s bytes", 50 ev.msg.msg_len, ev.msg.total_len) 51 msg = ev.msg 52 datapath = msg.datapath 53 ofproto = datapath.ofproto 54 parser = datapath.ofproto_parser 55 in_port = msg.match['in_port'] 56 57 pkt = packet.Packet(msg.data) 58 eth = pkt.get_protocols(ethernet.ethernet)[0] 59 60 if eth.ethertype == ether_types.ETH_TYPE_LLDP: 61 # ignore lldp packet 62 return 63 dst = eth.dst 64 src = eth.src 65 66 dpid = format(datapath.id, "d").zfill(16) 67 self.mac_to_port.setdefault(dpid, {}) 68 69 self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port) 70 71 # learn a mac address to avoid FLOOD next time. 72 self.mac_to_port[dpid][src] = in_port 73 74 if dst in self.mac_to_port[dpid]: 75 out_port = self.mac_to_port[dpid][dst] 76 else: 77 out_port = ofproto.OFPP_FLOOD 78 79 actions = [parser.OFPActionOutput(out_port)]\ 80 81 actions_timeout=[] 82 83 # install a flow to avoid packet_in next time 84 if out_port != ofproto.OFPP_FLOOD: 85 match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src) 86 # verify if we have a valid buffer_id, if yes avoid to send both 87 # flow_mod & packet_out 88 hard_timeout=10 89 if msg.buffer_id != ofproto.OFP_NO_BUFFER: 90 self.add_flow(datapath, 2, match,actions_timeout, msg.buffer_id,hard_timeout=10) 91 self.add_flow(datapath, 1, match, actions, msg.buffer_id) 92 return 93 else: 94 self.add_flow(datapath, 2, match, actions_timeout, hard_timeout=10) 95 self.add_flow(datapath, 1, match, actions) 96 data = None 97 if msg.buffer_id == ofproto.OFP_NO_BUFFER: 98 data = msg.data 99 100 out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id, 101 in_port=in_port, actions=actions, data=data) 102 datapath.send_msg(out)
(三)实验小结
通过这次实验,我了解了如何入力部署RYU控制器、理解了RYU控制器实现软件定义的集线器原理与交换机原理,在实验过程中,还是出现了很多问题,比如在lab6下面运行ryu-manager L2Switch.py后,拓扑图执行pingall操作却ping不通,最后发现是开了太多的端口导致无法继续运行,关闭既可;在新建一个L2212106700.py,使之和POX的Hub模块的变得一致,创建后无法开启,经过多次排查问题,发现将新建的拓扑图的命令中去掉protocols=OpenFlow10就可以启动;还有在进阶题中,hi ping h3也是无法ping 通,最后将openFlow10改成openflow13就可以了。只要再细心一些,就可以避免很多问题的出现。
标签:控制器,self,parser,datapath,msg,开源,ofproto,RYU,port From: https://www.cnblogs.com/zyt1006/p/16837368.html