首页 > 其他分享 >ARC165F题解

ARC165F题解

时间:2024-10-23 12:09:21浏览次数:7  
标签:dots 队列 题解 拓扑 mid 虚点 cdq ARC165F

前言

\(2024.10.19\) 日校测 \(T4\),思维太庙,被薄纱了,遂哭弱,写题解以记之。

简要题意

给你一个长度为 \(2n\) 的序列 \(A,\forall a_i\in[1,n]\),其中 \(1\) 到 \(n\) 每个数都出现了两次,现在需要把相同的两个数排到一起,每次操作只能交换相邻两个数,在保证操作次数最小的情况下求出现在序列的最小字典序

数据范围:\(1\le n\le2\times10^5\)。

思路

做题的时候首先应该考虑题目性质,可以从手玩样例开始。因为最后并没有让你求最少操作次数,所以我们只用讨论数与数之间的关系。我们考虑最简单的情况:假设现在序列中只有 \(1\) 和 \(2\) 各两个,一共存在六种可能的情况。我们先将他们列出来:

  1. \(1122\)
  2. \(1212\)
  3. \(1221\)
  4. \(2112\)
  5. \(2121\)
  6. \(2211\)

对于第一种和第六种情况我们可以不用考虑,因为需要保证操作数最小。然后这四种情况实际只有两种本质不同,我们将他们抓出来。

  • \(ABAB\)
  • \(ABBA\)

对于第一个情况,我们只需将中间两数交换即可。而第二种,我们既可以将第一个数交换到第三个位置,也可以将最后一个数交换到第二个位置。也就是说:第一种情况下数的位置决定最后顺序;而第二种情况下数的大小决定了最后顺序。

现在考虑扩展这两种情况,对于数列中任意的两数 \(A,B\),如果满足 \(A\dots B\dots A\dots B\) 的形式,我一定会让 \(A\) 排在 \(B\) 前面;如果满足 \(A\dots B\dots B\dots A\) 的形式,我就会去考虑两个数之间的大小关系。

总结一下:

\(\forall x\in[1,n]\),设 \(a_x\) 表示其第一次出现的位置,\(b_x\) 表示第二次出现的位置,如满足偏序:\(a_i\le a_j,b_i\le b_j\) 则 \(i\) 在 \(j\) 之前。所以把这些偏序抽象成一张图跑拓扑排序,拓扑时让数字小的点尽量先跑就能满足第二种情况。

可是直接建图跑是 \(O(n^2)\) 的,考虑优化。我们把每一个关于 \(i\) 的二元组 \((a_i,b_i)\) 看成平面内的点,若 \(i,j\) 之间连边则需要满足上述偏序。我们可以考虑分治建图,也就是类似 \(\text{cdq}\) 的过程,具体见下图:

我们横着切一刀把平面分成两部分,在分割线上建一些虚点。对于下面的实点垂直向上连边,上面的实点从下面虚点往上连边,然后虚点之间从左往右连。若每次在中间切最多切出 \(\log n\) 层,所以只有 \(n\log n\) 个点和边。但是拓扑的时候如果用优先队列是两只 \(\log\) 的,考虑继续优化。

其实我们只需要对实点用优先队列,对于虚点我们不关心他们的具体顺序,所以开一个普通队列存虚点,另一个优先队列存实点,每次先把所有普通队列的点拓扑完再去拓扑优先队列就行。时间复杂度是 \(O(n\log n)\) 的,因为实点只有 \(n\) 个。

代码

void cdq(int l, int r){
	if(l == r)return; int mid = l + r >> 1, lim = a[mid].l;
	cdq(l, mid), cdq(mid + 1, r);
	int i = l, j = mid + 1, k = l;
	while(i <= mid and j <= r)a[i].r < a[j].r ? b[k++] = a[i++] : b[k++] = a[j++];
	while(i <= mid)b[k++] = a[i++]; while(j <= r)b[k++] = a[j++];
	for(int i = l; i <= r; ++i){
		a[i] = b[i], ++nd; if(i ^ l)e[nd - 1].pb(nd), ++in[nd];
		if(a[i].l <= lim)e[a[i].id].pb(nd), ++in[nd];
		else e[nd].pb(a[i].id), ++in[a[i].id];
	}
}
void upd(int x){
	if(in[x])return;
	x <= n ? q.push(x) : qc.push(x);
}

signed main(){
	freopen("swap.in", "r", stdin);
	freopen("swap.out", "w", stdout);
	n = rd(), nd = n << 1;
	for(int i = 1; i <= nd; ++i){
		int x = rd();
		if(a[x].l)a[x].r = i; else a[x].l = i, a[x].id = x;
	}
	sort(a + 1, a + 1 + n); nd = n;
	cdq(1, n);
	for(int i = 1; i <= nd; ++i)upd(i);
	while(! q.empty() or ! qc.empty()){
		while(! qc.empty()){
			int u = qc.front(); qc.pop();
			for(int v : e[u])--in[v], upd(v);
		}
		if(q.empty())return 0;
		int u = q.top(); q.pop();
		pc(u), putchar(' '), pc(u), putchar(' ');
		for(int v : e[u])--in[v], upd(v);
	}
	return 0;
}

标签:dots,队列,题解,拓扑,mid,虚点,cdq,ARC165F
From: https://www.cnblogs.com/Nekopedia/p/18496103

相关文章

  • P8814 [CSP-J 2022] 解密 题解
    解方程$题目中说,n=pq,ed=(p-1)(q-1)+1,m=n-ed+2.$$把ed的式子展开,得到:$$ed=p(q-1)-(q-1)+1$$ed=pq-p-q+2$$再把展开后的式子带入m中,得:$$m=n-(pq-p-q+2)+2.$$m=n-pq+p+q-2+2$$\becausen=pq$$\thereforem=pq-pq+p+q-2+2$$m=p+q.$$如果想要求出p和q的值,那么可以再......
  • P8815 [CSP-J 2022] 逻辑表达式 题解
    短路我们可以使用一个变量来记录当前有没有短路.设变量短路为$dl$.当$dl$为$0$时,说明当前值为$0$,且运算符为&.当$dl$为$1$时,说明当前值为$1$,且运算符为|.代码重点讲完了,细节可以看代码以及注释.#include<iostream>#include<cstdio>#include<cstring>using......
  • 最佳序列 题解
    最佳序列题解题目描述你得到了一个\(N\)个非负整数组成的序列\(A\)。我们称由序列\(A\)的连续若干项组成的新序列为\(A\)的一个连续子序列。给出两个正整数\(L,R(L\leR)\)。称\(A\)的每一个长度不小于\(L\)且不大于\(R\)的连续子序列为一个纯洁序列,定义纯洁度......
  • 题解 [NOIP2022] 建造军营
    树形\(dp\)好题。观察题目发现,如果B国袭击后,导致A国两个军营不联通,那么B国袭击的一定是一条割边,反之,如果袭击的不是割边,那么不会导致任何影响。所以先进行边双缩点,变成一棵树,记每个联通块(缩完后)内的点数为\(wa\),边数为\(wb\),不妨先考虑对于树的情况如何处理。将问题进行转......
  • 20241022 校测T1 链链链(chain)题解
    Problem链链链chain你有一个长度为\(n\)的链,编号为\(i(1≤i<n)\)的边连接着结点\(i\)与\(i+1\)。每个结点\(i\)上有一个整数\(a_i\)。你需要做以下操作\(n−1\)次:•选择一条还未被断开的边,设其连接了点\(i\)与\(i+1\),将其断开。•断边后,对于所......
  • P9751 [CSP-J 2023] 旅游巴士 题解
    思路首先,举一个例子,假如说小Z到了入口,但是没到时间,所以没法进去,该怎么办?当然是等$k$个时间单位呀.除此之外,像到了其他景区,但是还没开门怎么办?继续等$k$的非负整数倍时间呀.知道这个后,我们先定义状态$f_{i,j}$,表示到达点$i$时,路径长度(即时间)$mod$$k$的最早时......
  • P9749 [CSP-J 2023] 公路 题解
    此题贪心食用更佳在输入油价的时候,我们边计算油价的最小值和路程和.当路程之和$>0$时,计算油价并且减去对应路程即可.注意事项要开$long$$long$!!!.代码#include<iostream>#include<cstdio>#include<cmath>#include<cstring>usingnamespacestd;typedeflonglo......
  • P9750 [CSP-J 2023] 一元二次方程 题解
    大模拟此题大模拟即可,只需注意几点:分母$>0$.要给根式化简.分数要约分.求较大根,那就$b^2$加$\bigtriangleup$即可.分母>0因为求根公式中,分母中只有$a$一个未知数,所以我们只需保证$a>0$即可.所以,当$a<0$时,我们把$a,b,c$全部取相反值.但这也是......
  • 题解:P10949 四叶草魔杖
    2024/10/16更新:修改了状态的枚举方式,时间复杂度变为\(O(3^n)\)。题目传送门前言本篇题解默认您已熟练掌握最小生成树、状压dp及其应用,如果您还不会,请先阅读相关博客。分析我们要选出一条边,通过边转移能量,使得所有宝石的能量都为\(0\)。这看上去挺麻烦的,让我们挖掘一......
  • 题解:AT_joisc2019_k 合併 (Mergers)
    题目传送门前言联考题,被初一的我切了。看到题解区里没有Tarjan做法,于是来补一篇Tarjan题解。分析因为相同州的城市不会分裂,所以可以给相同州的成市连边(注意不是两两连边,连成一个环就行),发现把国家分成两个部分就相当于断掉一条道路。那么如果整个国家就是一个边双连通分量,......