首页 > 其他分享 >流量治理

流量治理

时间:2024-10-14 15:48:16浏览次数:7  
标签:调用 服务 流量 重试 限流 线程 治理 失败

流量治理

在服务发现、网关路由等支持下,踏出了服务化的第一步以后,很可能仍会经历一段阵痛期,随着拆分出的服务越来越多,随之而来会面临以下两个问题的困扰:

  • 由于某一个服务的崩溃,导致所有用到这个服务的其他服务都无法正常工作,一个点的错误经过层层传递,最终波及到调用链上与此有关的所有服务,这便是雪崩效应。如何防止雪崩效应便是微服务架构容错性设计原则的具体实践,否则服务化程度越高,整个系统反而越不稳定。
  • 服务虽然没有崩溃,但由于处理能力有限,面临超过预期的突发请求时,大部分请求直至超时都无法完成处理。这种现象产生的后果跟交通堵塞是类似的,如果一开始没有得到及时的治理,后面就需要长时间才能使全部服务都恢复正常。

由此提出服务容错、流量控制等一系列解决方案。

服务容错

容错性设计是不得不做的,因为在一个大的服务集群中,程序可能崩溃、节点可能宕机、网络可能中断,这些“意外情况”都可能导致整个程序的不可用。

容错策略

这里容错策略指的是“面对故障,我们该做些什么”。常见的容错策略有以下几种:

  • 故障转移(Failover):故障转移是指如果调用的服务器出现故障,系统不会立即向调用者返回失败结果,而是自动切换到其他服务副本,尝试其他副本能否返回成功调用的结果,从而保证了整体的高可用性。

    注意:故障转移的容错策略应该有一定的调用次数限制,譬如允许最多重试三个服务,如果都发生报错,那还是会返回调用失败。原因不仅是因为重试是有执行成本的,更是因为过度的重试反而可能让系统处于更加不利的状况。

    该能够实施的前提是要求服务具备幂等性,对于非幂等的服务,重复调用就可能产生脏数据,引起的麻烦远大于单纯的某次服务调用失败。

  • 快速失败(Failfast):该方案就是尽快让服务报错,坚决避免重试,尽快抛出异常,由调用者自行处理。

  • 安全失败(Failsafe):在一个调用链路中的服务通常也有主路和旁路之分,并不见得其中每个服务都是不可或缺的,有部分服务失败了也不影响核心业务的正确性。对这类逻辑,一种理想的容错策略是即使旁路逻辑调用实际失败了,也当作正确来返回,如果需要返回值的话,系统就自动返回一个符合要求的数据类型的对应零值,然后自动记录一条服务调用出错的日志备查即可,这种策略被称为安全失败。

  • 沉默失败(Failsilent):该策略是当请求失败后,就默认服务提供者一定时间内无法再对外提供服务,不再向它分配请求流量,将错误隔离开来,避免对系统其他部分产生影响,此即为沉默失败策略。

    使用场景:如果大量的请求需要等到超时(或者长时间处理后)才宣告失败,很容易由于某个远程服务的请求堆积而消耗大量的线程、内存、网络等资源,进而影响到整个系统的稳定

  • 故障恢复(Failback):故障恢复一般不单独存在,而是作为其他容错策略的补充措施,一般在微服务管理框架中,如果设置容错策略为故障恢复的话,通常默认会采用快速失败加上故障恢复的策略组合。它是指当服务调用出错了以后,将该次调用失败的信息存入一个消息队列中,然后由系统自动开始异步重试调用。

    故障恢复策略一方面是尽力促使失败的调用最终能够被正常执行,另一方面也可以为服务注册中心和负载均衡器及时提供服务恢复的通知信息。故障恢复显然也是要求服务必须具备幂等性的,由于它的重试是后台异步进行,即使最后调用成功了,原来的请求也早已经响应完毕,所以故障恢复策略一般用于对实时性要求不高的主路逻辑,同时也适合处理那些不需要返回值的旁路逻辑。为了避免在内存中异步调用任务堆积,故障恢复与故障转移一样,应该有最大重试次数的限制。

  • 并行调用(Forking):它是指一开始就同时向多个服务副本发起调用,只要有其中任何一个返回成功,那调用便宣告成功,这是一种在关键场景中使用更高的执行成本换取执行时间和成功概率的策略。

  • 广播调用(Broadcast):广播调用与并行调用是相对应的,都是同时发起多个调用,但并行调用是任何一个调用结果返回成功便宣告成功,广播调用则是要求所有的请求全部都成功,这次调用才算是成功,任何一个服务提供者出现异常都算调用失败,广播调用通常会被用于实现“刷新分布式缓存”这类的操作。

常见容错策略优缺点及应用场景对比

容错策略 优点 缺点 应用场景
故障转移 系统自动处理,调用者对失败的信息不可见 增加调用时间,额外的资源开销 调用幂等服务 对调用时间不敏感的场景
快速失败 调用者有对失败的处理完全控制权 不依赖服务的幂等性 调用者必须正确处理失败逻辑,如果一味只是对外抛异常,容易引起雪崩 调用非幂等的服务 超时阈值较低的场景
安全失败 不影响主路逻辑 只适用于旁路调用 调用链中的旁路服务
沉默失败 控制错误不影响全局 出错的地方将在一段时间内不可用 频繁超时的服务
故障恢复 调用失败后自动重试,也不影响主路逻辑 重试任务可能产生堆积,重试仍然可能失败 调用链中的旁路服务 对实时性要求不高的主路逻辑也可以使用
并行调用 尽可能在最短时间内获得最高的成功率 额外消耗机器资源,大部分调用可能都是无用功 资源充足且对失败容忍度低的场景
广播调用 支持同时对批量的服务提供者发起调用 资源消耗大,失败概率高 只适用于批量操作的场景

容错设计模式

容错设计模式指的是“要实现某种容错策略,我们该如何去做”,为了达到该目的,开发人员总结出了一些被实践证明是有效的服务容错设计模式,譬如微服务中常见的断路器模式、舱壁隔离模式,重试模式等等。

断路器模式

断路器的基本思路是很简单的,就是通过代理来一对一地接管服务调用者的远程请求。断路器会持续监控并统计服务返回的成功、失败、超时、拒绝等各种结果,当出现故障(失败、超时、拒绝)的次数达到断路器的阈值时,它状态就自动变为“OPEN”,后续此断路器代理的远程访问都将直接返回调用失败,而不会发出真正的远程服务请求。通过断路器对远程服务的熔断,避免因持续的失败或拒绝而消耗资源,因持续的超时而堆积请求,最终的目的就是避免雪崩效应的出现。由此可见,断路器本质是一种快速失败策略的实现方式。

断路器就是一种有限状态机,断路器模式就是根据自身状态变化自动调整代理请求策略的过程。一般要设置以下三种断路器的状态:

  • CLOSED:表示断路器关闭,此时的远程请求会真正发送给服务提供者。断路器刚刚建立时默认处于这种状态,此后将持续监视远程请求的数量和执行结果,决定是否要进入 OPEN 状态。
  • OPEN:表示断路器开启,此时不会进行远程请求,直接给服务调用者返回调用失败的信息,以实现快速失败策略。
  • HALF OPEN:这是一种中间状态。断路器必须带有自动的故障恢复能力,当进入 OPEN 状态一段时间以后,将切换到 HALF OPEN 状态。该状态下,会放行一次远程调用,然后根据这次调用的结果成功与否,转换为 CLOSED 或者 OPEN 状态,以实现断路器的弹性恢复。

现在关注这两者的转换条件是什么?最简单直接的方案是只要遇到一次调用失败,那就默认以后所有的调用都会接着失败,断路器直接进入 OPEN 状态,但这样做的效果是很差的,虽然避免了故障扩散和请求堆积,却使得外部看来系统将表现极其不稳定。现实中,比较可行的办法是在以下两个条件同时满足时,断路器状态转变为 OPEN:

  • 一段时间(譬如 10 秒以内)内请求数量达到一定阈值(譬如 20 个请求)。这个条件的意思是如果请求本身就很少,那就用不着断路器介入。
  • 一段时间(譬如 10 秒以内)内请求的故障率(发生失败、超时、拒绝的统计比例)到达一定阈值(譬如 50%)。这个条件的意思是如果请求本身都能正确返回,也用不着断路器介入。

以上两个条件同时满足时,断路器就会转变为 OPEN 状态。

服务熔断服务降级之间的联系与差别:

断路器做的事情是自动进行服务熔断,这是一种快速失败的容错策略的实现方法。在快速失败策略明确反馈了故障信息给上游服务以后,上游服务必须能够主动处理调用失败的后果,而不是坐视故障扩散,这里的“处理”指的就是一种典型的服务降级逻辑,降级逻辑可以包括,但不应该仅仅限于是把异常信息抛到用户界面去,而应该尽力想办法通过其他路径解决问题,譬如把原本要处理的业务记录下来,留待以后重新处理是最低限度的通用降级逻辑。

服务降级不一定是在出现错误后才被动执行的,许多场景里面,降级更可能是指主动迫使服务进入降级逻辑。譬如,出于应对可预见的峰值流量,或者是系统检修等原因,要关闭系统部分功能或关闭部分旁路服务,这时候就有可能会主动迫使这些服务降级。当然,此时服务降级就不一定是出于服务容错的目的了,更可能属于流量控制的范畴。

舱壁隔离模式

舱壁隔离模式是常用的实现服务隔离的设计模式。

前面断路器中已经多次提到,调用外部服务的故障大致可以分为“失败”、“拒绝”以及“超时”三大类,其中“超时”引起的故障尤其容易给调用者带来全局性的风险。这是由于目前主流的网络访问只要请求一直不结束,就要一直占用着某个线程不能释放。而线程是典型的整个系统的全局性资源,为了不让某一个远程服务的局部失败演变成全局性的影响,就必须设置某种止损方案,这便是服务隔离的意义。

我们来看一个更具体的场景,当分布式系统依赖的某个服务A,那在高流量的访问下——或者更具体点,假设平均 1 秒钟内对该服务的调用会发生 50 次,这就意味着该服务如果长时间不结束的话,每秒会有 50 条用户线程被阻塞。如果这样的访问量一直持续,我们按 Tomcat 默认的 HTTP 超时时间 20 秒来计算,20 秒内将会阻塞掉 1000 条用户线程,此后才陆续会有用户线程因超时被释放出来,回归 Tomcat 的全局线程池中。一般 Java 应用的线程池最大只会设置到 200 至 400 之间,这意味着此时系统在外部将表现为所有服务的全面瘫痪,而不仅仅是只有涉及到“服务A”的功能不可用,因为 Tomcat 已经没有任何空余的线程来为其他请求提供服务了。

对于这类情况,一种可行的解决办法是为每个服务单独设立线程池,这些线程池默认不预置活动线程,只用来控制单个服务的最大连接数。譬如,对出问题的“服务A”设置了一个最大线程数为 5 的线程池,这时候它的超时故障就只会最多阻塞 5 条用户线程,而不至于影响全局。此时,其他不依赖“服务A”的用户线程依然能够正常对外提供服务。

使用局部的线程池来控制服务的最大连接数有许多好处:当服务出问题时能够隔离影响,当服务恢复后,还可以通过清理掉局部线程池,瞬间恢复该服务的调用,而如果是 Tomcat 的全局线程池被占满,再恢复就会十分麻烦。

坏处:它额外增加了 CPU 的开销,每个独立的线程池都要进行排队、调度和下文切换工作。

为应对这种情况,还有一种更轻量的可以用来控制服务最大连接数的办法:信号量机制。如果不考虑清理线程池、客户端主动中断线程这些额外的功能,仅仅是为了控制一个服务并发调用的最大次数,可以只为每个远程服务维护一个线程安全的计数器即可,并不需要建立局部线程池。具体做法是当服务开始调用时计数器加 1,服务返回结果后计数器减 1,一旦计数器超过设置的阈值就立即开始限流,在回落到阈值范围之前都不再允许请求了。由于不需要承担线程的排队、调度、切换工作,所以单纯维护一个作为计数器的信号量的性能损耗,相对于局部线程池来说几乎可以忽略不计。

重试模式

故障转移和故障恢复策略都需要对服务进行重复调用,差别是这些重复调用有可能是同步的,也可能是后台异步进行;有可能会重复调用同一个服务,也可能会调用到服务的其他副本。无论具体是通过怎样的方式调用、调用的服务实例是否相同,都可以归结为重试设计模式的应用范畴。

重试模式适合解决系统中的瞬时故障,例如临时性失灵,网络抖动、服务的临时过载。重试模式实现并不困难,即使完全不考虑框架的支持,靠程序员自己编写十几行代码也能够完成。在实践中,重试模式面临的风险反而大多来源于太过简单而导致的滥用。我们判断是否应该且是否能够对一个服务进行重试时,应同时满足以下几个前提条件:

  • 仅在主路逻辑的关键服务上进行同步的重试,不是关键的服务,一般不把重试作为首选容错方案,尤其不该进行同步重试。
  • 仅对由瞬时故障导致的失败进行重试。尽管一个故障是否属于可自愈的瞬时故障并不容易精确判定,但从 HTTP 的状态码上至少可以获得一些初步的结论,譬如,当发出的请求收到了 401 Unauthorized 响应,说明服务本身是可用的,只是你没有权限调用,这时候再去重试就没有什么意义。
  • 仅对具备幂等性的服务进行重试。如果服务调用者和提供者不属于同一个团队,那服务是否幂等其实也是一个难以精确判断的问题,但仍可以找到一些总体上通用的原则。譬如,RESTful 服务中的 POST 请求是非幂等的,而 GET、HEAD、OPTIONS、TRACE 由于不会改变资源状态,这些请求应该被设计成幂等的;PUT 请求一般也是幂等的,因为 n 个 PUT 请求会覆盖相同的资源 n-1 次;DELETE 也可看作是幂等的,同一个资源首次删除会得到 200 OK 响应,此后应该得到 204 No Content 响应。这些都是 HTTP 协议中定义的通用的指导原则,虽然对于具体服务如何实现并无强制约束力,但我们自己建设系统时,遵循业界惯例本身就是一种良好的习惯。
  • 重试必须有明确的终止条件,常用的终止条件有两种:
    • 超时终止
    • 次数终止:重试必须要有一定限度,不能无限制地做下去,通常最多就只重试 2 至 5 次。重试不仅会给调用者带来负担,对于服务提供者也是同样是负担。所以应避免将重试次数设的太大。

这里所介绍的容错策略和容错设计模式,最终目的均是为了避免服务集群中某个节点的故障导致整个系统发生雪崩效应,仅仅只是做到容错。

流量控制

任何一个系统的运算、存储、网络资源都不是无限的,当系统资源不足以支撑外部超过预期的突发流量时,便应该要有取舍,建立面对超额流量自我保护的机制,这个机制就是微服务中常说的“限流”。

一个健壮的系统需要做到恰当的流量控制,更具体地说,需要妥善解决以下三个问题:

  • 依据什么限流?:要不要控制流量,要控制哪些流量,控制力度要有多大,等等这些操作都没法在系统设计阶段静态地给出确定的结论,必须根据系统此前一段时间的运行状况,甚至未来一段时间的预测情况来动态决定。
  • 具体如何限流?:解决系统具体是如何做到允许一部分请求能够通行,而另外一部分流量实行受控制的失败降级,这必须了解掌握常用的服务限流算法和设计模式。
  • 超额流量如何处理?:超额流量可以有不同的处理策略,也许会直接返回失败,或者被迫使它们进入降级逻辑,这种被称为否决式限流。也可能让请求排队等待,暂时阻塞一段时间后继续处理,这种被称为阻塞式限流。

流量统计指标

要做流量控制,首先要弄清楚到底哪些指标能反映系统的流量压力大小。我们先来理清经常用于衡量服务流量压力,但又较容易混淆的三个指标的定义:

  • 每秒事务数(Transactions per Second,TPS):TPS 是衡量信息系统吞吐量的最终标准。“事务”可以理解为一个逻辑上具备原子性的业务操作。
  • 每秒请求数(Hits per Second,HPS):HPS 是指每秒从客户端发向服务端的请求数。如果只要一个请求就能完成一笔业务,那 HPS 与 TPS 是等价的,但在一些场景(尤其常见于网页中)里,一笔业务可能需要多次请求才能完成。
  • 每秒查询数(Queries per Second,QPS):QPS 是指一台服务器能够响应的查询次数。如果只有一台服务器来应答请求,那 QPS 和 HPS 是等价的,但在分布式系统中,一个请求的响应往往要由后台多个服务节点共同协作来完成。

目前,主流系统大多倾向使用 HPS 作为首选的限流指标,它是相对容易观察统计的,而且能够在一定程度上反应系统当前以及接下来一段时间的压力。但限流指标并不存在任何必须遵循的权威法则,根据系统的实际需要,哪怕完全不选择基于调用计数的指标都是有可能的。

限流设计模式

拒绝宕机!一文详解分布式限流方案(附代码实现)-腾讯云开发者社区-腾讯云 (tencent.com)
参考这篇文档即可,里面介绍的较为详细。

分布式限流

在微服务架构下我们能够精细控制分布式集群中每个服务消耗量的限流算法称为分布式限流。

分布式限流的目的就是要让各个服务节点的协同限流,无论是将限流功能封装为专门的远程服务,抑或是在系统采用的分布式框架中有专门的限流支持,都需要将原本在每个服务节点自己内存当中的统计数据给开放出来,让全局的限流服务可以访问到才行。

一种常见的简单分布式限流方法是将所有服务的统计结果都存入集中式缓存(如 Redis)中,以实现在集群内的共享,并通过分布式锁、信号量等机制,解决这些数据的读写访问时并发控制的问题。在可以共享统计数据的前提下,原本用于单机的限流模式理论上也是可以应用于分布式环境中的,可是其代价也显而易见:每次服务调用都必须要额外增加一次网络开销,所以这种方法的效率肯定是不高的,流量压力大时,限流本身反倒会显著降低系统的处理能力。

只要集中式存储统计信息,就不可避免地会产生网络开销,为了缓解这里产生的性能损耗,一种可以考虑的办法是在令牌桶限流模式基础上进行“货币化改造”,即不把令牌看作是只有准入和不准入的“通行证”,而看作数值形式的“货币额度”。当请求进入集群时,首先在 API 网关处领取到一定数额的“货币”,为了体现不同等级用户重要性的差别,他们的额度可以有所差异,譬如让 VIP 用户的额度更高甚至是无限的。我们将用户 A 的额度表示为 QuanityA。由于任何一个服务在响应请求时都需要消耗集群一定量的处理资源,所以访问每个服务时都要求消耗一定量的“货币”,假设服务 X 要消耗的额度表示为 CostX,那当用户 A 访问了 N 个服务以后,他剩余的额度 LimitN即表示为:

LimitN = QuanityA - N*CostX

此时,剩余额度 LimitN作为内部限流的指标,规定在任何时候,只要一旦剩余额度 LimitN<=0 时,就不再允许访问其他服务了。此时必须先发生一次网络请求,重新向令牌桶申请一次额度,成功后才能继续访问,不成功则进入降级逻辑。除此之外的任何时刻,即 LimitN不为零时,都无须额外的网络访问,因为计算 LimitN是完全可以在本地完成的。

基于额度的限流方案对限流的精确度有一定的影响,可能存在业务操作已经进行了一部分服务调用,却无法从令牌桶中再获取到新额度,因“资金链断裂”而导致业务操作失败。这种失败的代价是比较高昂的,它白白浪费了部分已经完成了的服务资源,但总体来说,它仍是一种并发性能和限流效果上都相对折衷可行的分布式限流方案。

参考自周志明老师的《凤凰架构》一书,有兴趣的小伙伴可以购买阅读,也可以访问官网 https://icyfenix.cn/ 阅读。

标签:调用,服务,流量,重试,限流,线程,治理,失败
From: https://www.cnblogs.com/strind/p/18464376

相关文章

  • AI绘画流量变现玩法揭秘(附教程)
    AI绘图简单高效,有人已经通过简单的几招月入过万了。卖图片不稀奇,但是一般人哪有那么多漂亮的图片呢,而且还涉及版权问题。但是现在AI可以解决这个问题,且作图效率奇高。这里推荐几个简单的AI作画变现途径:1免费取图赚流量主人都有贪便宜的心理,说到有免费,就会去获取。玩法......
  • Burp Suite为何能抓到HTTPS的明文流量,Wireshark可以吗,公司电脑的加密流量也是被监控了
    在前期博文《万字图文详解HTTPS协议通信过程,结合抓包实战解析带你一次看透HTTPS!》中,我们知悉HTTPS通信内容是用会话密钥加密的,但不少细心的读者存在疑问:为何对于使用HTTPS协议的站点,在BurpSuite中拦截到的数据包却是“明文传输”的?如下图所示,这又是什么原理呢?那公司电脑的......
  • 数据治理 - [03] 专业术语及其说明
    题记部分 一、数据管理  数据管理是指组织对其整个数据生命周期进行的规划、执行和控制,以期最大化数据的价值。它涵盖了从数据采集、存储、处理到最终使用等全部过程。  良好的数据管理需要进行全面的战略规划,包括确定组织的数据需求、数据架构的设计、明确数据收集方......
  • 只需2招,教你打造百万级别的私域流量池
    其实最近有很多学员都在问我怎么做私域流量,但是我想说的是:私域流量,这四个字说出来很容易,其中包含的内容太多了,包括社群社区、用户运营、复购、转介绍、搭建跟用户沟通的渠道等等,这些都只是私域流量中的某个环节。单凭几千个文字根本说不透怎么做私域流量,但是既然网友都在问,那......
  • 内核级流量治理引擎Kmesh八大新特性解读
    本文分享自华为云社区《内核级流量治理引擎Kmeshv0.5发布!进击的Sidecarless服务网格》,作者:云容器大未来。我们非常高兴地宣布Kmeshv0.5.0的发布。首先,感谢我们的贡献者在过去两个月中的辛勤工作。在v0.5.0版本中,我们进行了许多重要的增强,包括命令行工具kmeshctl、更全面......
  • GB 18030及生僻字治理
     名词解释:编码字符集codedcharacterset一组无歧义的规则,用以建立一个字符集和该字符集中的字符及其编码表示之间的对应关系,通常也指按照这种规则确定的文字的有序集合。示例:1.GB18030是我国制订的以汉字为主并包含多种我国少数民族文字(例如藏、蒙古、傣、彝、朝鲜、维......
  • 探讨微服务治理场景中,Sermant Backend如何管理插件动态配置
    本文分享自华为云社区《SermantBackend配置管理功能在微服务治理场景中的应用》,作者:华为云开源。一、背景Sermant是基于Java字节码增强技术的无代理服务网格,业务应用通过JavaAgent的方式将Sermant挂载至目标进程中。其中动态配置是Sermant框架中的关键能力,它能够在微服务挂载Se......
  • calico节点重启4分钟后跨节点流量才通
    birdv0.3.3问题现象针对calicobgppeer+ipip模式,单个节点重启,等待4分钟以上,pod跨节点流量才通。问题分析k8s节点重启->bird进程加载bird配置文件,进入gracefulrestart流程和wait状态每次尝试建立bgppeer连接时,graceful_restart_locks++。nest/proto.cproto_graceful_res......
  • 【产品经理修炼之道】- 中后台产品实践:以智慧城市场景【数据融合治理平台】产品为例
    智慧城市治理产品该如何构建?作者结合自身经历,总结过去所负责的产品和项目,梳理并构建城市治理(智慧城市)的整体业务架构、以及通过调研分析城市治理的发展趋势和市场情况,并对其需要进行产品设计。本篇文章,旨在对个人从事TOG工作3年半(待过2家做2G业务的公司)的工作内容的一个总结......
  • 流量劫持常见的攻击场景
    流量劫持常见的攻击场景流量劫持是一种网络攻击手段,攻击者通过操控数据包的传输过程来窃取、篡改或伪造通信内容。这种攻击可以在多个层面上发生,通常会导致用户敏感信息的泄露、数据的篡改以及其他更严重的后果。以下是一些常见的流量劫持攻击场景:1.DNS劫持DNS劫持的攻击目标......