首页 > 其他分享 >密码学承诺之原理和应用 - Kate多项式承诺

密码学承诺之原理和应用 - Kate多项式承诺

时间:2024-10-11 21:45:54浏览次数:8  
标签:承诺 cdot 多项式 newline 密码学 hat Kate

主页

微信公众号:密码应用技术实战
博客园首页:https://www.cnblogs.com/informatics/
GIT地址:https://github.com/warm3snow

简介

多项式承诺是一种实用性比较强的密码学承诺方案,允许一个方(承诺者)向另一个方(验证者)承诺一个多项式的值,而不泄露多项式的具体形式。在零知识证明、可验证密码共享等领域有广泛应用,常见的多项式承诺有Kate多项式承诺、FRI多项式承诺,IPA多项式承诺等。本文将重点介绍Kate多项式承诺的构造和应用。

在阅读下文之前,了解基础的密码学承诺原理和应用是非常有必要的,读者可以参考以下几篇文章:
《密码学承诺之原理和应用 - 概览》
《密码学承诺zhi原理和应用 - Sigma承诺》
《密码学承诺之原理和应用 - Pedersen承诺》

前言

多项式

在详细介绍Kate多项式承诺之前,我们先来简单介绍一下多项式的基本概念。多项式一般表示为:

\[f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_dx^d = \sum_{i=0}^{d}a_ix^i \]

上述多项式中,\(a_0, a_1, a_2, ..., a_d\)是多项式系数,\(x\)是多项式的变量,\(d\)是多项式的次数(或多项式的度)。多项式的次数是指多项式中最高次幂的指数,例如上述多项式的次数为\(t\),因此上述\(f(x)\)我们也称作d次多项式。多项式系数\(a_0, a_1, a_2, ..., a_d\)是多项式的重要组成部分,它们决定了多项式的形状和性质,也是需要保护的重要信息。

多项式的值是指将变量x代入多项式后的结果,例如\(f(\beta)\)表示将\(x=\beta\)代入多项式中,计算出的结果。

多项式的根是指多项式的值为0的点,即\(f(x) = 0\)的点。

多项式有两个重要的性质:

  • 一元n次多项式最多有n个根,假设根为\(\beta_1, \beta_2, ..., \beta_d\),则多项式可以表示为:\(f(x) = (x-\beta_1)(x-\beta_2)...(x-\beta_d)\)
  • 商多项式,多项式减去在某一个点的多项式值(如点:<\(a, f(a)\)>), 可以被另一个多项式整除,这个多项式称为商多项式。商多项式表示为\(h(x) = \frac{f(x)-f(a)}{x-a}\)

注:在零知识证明中,通常会将要证明的问题转化为多项式表达,并通过多项式与商多项式的等式关系来进行证明。

双线性映射

在多项式承诺验证中,会用到双线性映射的概念。双线性映射(Bilinear Map)是数学中一种重要的映射,尤其在密码学和数论中有广泛的应用。它是一种特殊的函数,具有以下性质:

定义

设\(G\)是一个乘法循环群, \(g\)是一个生成元, \(G_T\)是另一个群。一个映射\(e: G \times G \rightarrow G_T\)被称为双线性映射,如果满足以下条件:

  • 双线性:对于任意的\(a, b \in Z_p\)和\(g, h \in G\),有\(e(g^a, h^b) = e(g, h)^{ab}\)
  • 非退化性:对于任意的\(g \in G\),\(e(g, g) \neq 1\)
  • 可计算性:对于任意的\(g, h \in G\),\(e(g, h)\)可以在多项式时间内计算

重要性质

  • 可交换性:对于任意的\(g, h \in G\),\(e(g, h) = e(h, g)\)
  • 分配性:对于任意的\(g, h1, h2 \in G\),\(e(g, h1 \cdot h2) = e(g, h1) \cdot e(g, h2)\)
  • \(e(g, g)为G_T\)的一个生成元

多项式承诺

多项式承诺主要流程如下:

image

  • [00] Setup初始化阶段:承诺者和验证者共享公共参考串CRS
    • CRS:common reference string,是一个公开的字符串,一般通过可信的第三方生成,用于多项式承诺的构造
  • [01] Commit承诺阶段:承诺者计算多项式承诺\(C = Commit(CRS, f(α))\),并发送\(C\)给验证者。
    • C的计算依赖于多项式\(f(x)\)和公共参考串CRS
    • 注在多项式承诺中,多项式的度需要满足\(d \leq t\),其中\(t\)是公共参考串中的最高幂次
  • [02] Open打开阶段:承诺者揭示多项式\(f(x)\)
    • f(x)是多项式的具体形式,承诺者直接揭示多项式\(f(x)\),如多项式参数和系数
  • [03] VerifyPoly验证阶段:验证者重新计算多项式承诺\(C^{'} = Commit(CRS, f(α))\)
    • 验证者重新计算多项式承诺\(C^{'}\),并验证\(C^{'}\)和\(C\)是否相等

以上方式的多项式承诺打开阶段是明文揭示,即承诺者直接揭示多项式\(f(x)\),验证者重新计算多项式承诺\(C^{'} = Commit(CRS, f(x))\),并验证\(C^{'}\)和\(C\)是否相等。
明文揭示的方式简单直接,但存在以下问题:

  • 多项式阶数较高时,明文揭示的方式会导致通信量较大
  • 明文揭示的方式无法保护多项式,必须公开

Kate多项式承诺

为了解决明文揭示多项式承诺存在的问题,Kate多项式承诺基于多项式点打开的方式,实现了多项式的承诺和验证。点打开方式指的是承诺者不直接揭示多项式\(f(x)\),而是揭示多项式在某个点的值\(f(β)\),并提供一个witness证明,验证者通过双线性映射验证多项式在β点的值是否正确。通过点打开的方式,Kate多项式承诺解决了明文揭示的问题,同时保护了多项式的隐私。

Kate多项式承诺的构造一般有两种方案,两种方案在安全性上有所不同:

  • 计算隐藏的Kate多项式承诺:承诺的值在计算上是隐藏的,意味着对于任何多项式时间的攻击者,无法有效区分两个不同的承诺。换句话说,攻击者在计算上无法从承诺中推断出承诺的内容。
  • 无条件隐藏的Kate多项式承诺:承诺的值在计算上是无条件隐藏的,意味着对于任何攻击者,无法从承诺中推断出承诺的内容。

定义上比较抽象,简单来说就是无条件隐藏通过引入随机性,使得承诺的值在计算上无法被推断出来,而计算隐藏仅使用离散对数困难性假设,使得承诺的值在计算上无法被推断出来。

计算隐藏的Kate多项式承诺

计算隐藏的Kate多项式承诺的构造如下:

image

[00] Setup初始化阶段

Kate多项式承诺需要初始化阶段,主要是生成和公开CRS,以及双线性映射\(e: G \times G \rightarrow G_T\)。在Kate多项式承诺中CRS如下:

\[CRS = (G, g^α, g^{α^2}, ..., g^{α^t}) \]

其中,\(G\)代表乘法群,\(g\)是\(G\)的一个生成元,\(α\)是一个随机数,\(t\)是最高幂次。注:在零知识证明中,\(α\)是一个私密的值,不会公开,需要被安全销毁(通常被称为有毒废料)。

注:在Kate论文中,CRS被叫做PK,即公钥。

[01] Commit承诺阶段

承诺者计算多项式的承诺值\(C = Commit(CRS, f(x))\),并发送\(C\)给验证者。多项式的承诺值计算方式如下:

\[C = g^{f(α)} = g^{\sum_{i=0}^{d}{a_iα^i}} = \prod_{i=0}^{d}g^{a_iα^i} = \prod_{i=0}^{d}{(g^{α^i})^{a_i}} \]

  • \(a_i\)是多项式的系数, 承诺者已知
  • CRS是公共参考串,CRS中包含了\(g^{α^i}\)的值,因此承诺者可以在不知道\(α\)的情况下计算\(C\)

[02] CreateWitness点打开阶段

承诺者计算多项式在某个点的值\(f(β)\),并提供一个witness证明\(w\),其中\(w\)是多项式在β点的承诺,计算方式如下:

  • 首先计算商多项式

\[φ(x) = \frac{f(x) - f(β)}{x - β} = \sum_{i=0}^{d-1}b_ix^i \]

  • 计算\(f(x)\)在β点的值

\[f(β) = \sum_{i=0}^{d}a_iβ^i \]

  • 计算商多项式在α点的承诺值

\[w = Commit(CRS, φ(x)) \newline = g^{φ(α)} = g^{\sum_{i=0}^{d-1}{b_iα^i}} \newline = \prod_{i=0}^{d-1}g^{b_iα^i} = \prod_{i=0}^{d-1}{(g^{α^i})^{b_i}} \]

承诺者将\((β, f(β), w)\)发送给验证者。

[03] VerifyEval点验证阶段

验证者使用双线性映射验证多项式在β点的打开值是否正确,验证方式如下:

\[e(C, g) \stackrel{?}{=} e(w, g^{α}/g^{β}) \cdot e(g, g)^{f(β)} \]

正确性验证:

\[e(w, g^{α}/g^{β}) \cdot e(g, g)^{f(β)} \newline = e(g^{φ(α)}, g^{α-β}) \cdot e(g, g)^{f(β)} \newline = e(g,g)^{φ(α) \cdot (α-β)+f(β)} \]

根据商多项式的定义,有:\(f(α) - f(β) = φ(α) \cdot (α-β)\),因此:

\[e(w, g^{α}/g^{β}) \cdot e(g, g)^{f(β)} \newline = e(g,g)^{f(α)-f(β)+f(β)} \newline = e(g,g)^{f(α)} \newline = e(g^{f(α)}, g) \newline = e(C, g) \]

因此,\(e(C, g) = e(w, g^{α}/g^{β}) \cdot e(g, g)^{f(β)}\),验证通过。

无条件隐藏的Kate多项式承诺

无条件隐藏的Kate多项式承诺构造与计算隐藏的Kate多项式承诺流程类似,区别在于:

  • 初始化阶段的CRS不同
  • 承诺值的生成和验证方式不同(承诺值生成基于Pedersen承诺)

初始化阶段

CRS的构造如下:

\[CRS = (G, g^α, g^{α^2}, ..., g^{α^t}, h, h^α, h^{α^2}, ..., h^{α^t}) \]

其中,\(h\)是\(G\)的另一个生成元。

Commit承诺阶段

承诺者计算多项式的承诺值\(C = Commit(CRS, f(x))\),计算方式如下:

\[C = g^{f(α)} \cdot h^{\hat{f(α)}} \newline f(α) = \sum_{i=0}^{d}{a_iα^i} \newline \hat{f(α)} = \sum_{i=0}^{d}{b_iα^i} \newline = \prod_{i=0}^{d}{(g^{α^i})^{a_i}} \cdot \prod_{i=0}^{d}{(h^{α^i})^{b_i}} \]

CreateWitness点打开阶段

承诺者计算多项式在某个点的值\(f(β)\),并提供一个witness证明\(w\),计算方式如下:

  • 计算商多项式

\[φ(x) = \frac{f(x) - f(β)}{x - β} \newline \hat{φ(x)} = \frac{\hat{f(x)} - \hat{f(β)}}{x - β} \]

  • 计算点打开值

\[w = Commit(CRS, φ(x)) \cdot Commit(CRS, \hat{φ(x)}) \newline = g^{φ(α)} \cdot h^{\hat{φ(α)}} \]

\(g^{φ(α)}\)和\(h^{\hat{φ(α)}}\)计算方式基于CRS(方式与上文相同,略),承诺者将\((β, f(β), \hat{f(β)}, w)\)发送给验证者。

VerifyEval点验证阶段

验证者使用双线性映射验证多项式在β点的打开值是否正确,验证方式如下:

\[e(C, g) \stackrel{?}{=} e(w, g^{α}/g^{β}) \cdot e(g^{f(β)} \cdot h^{\hat{f(β)}}, g) \]

正确性验证:

\(h\)是\(G\)中的一个群元素,因此不是一般性可设\(h = g^\lambda\),其中\(\lambda\)是一个随机数。因此:

\[e(w, g^{α}/g^{β}) \cdot e(g^{f(β)} \cdot h^{\hat{f(β)}}, g) \newline = e(g^{φ(α)} \cdot h^{\hat{φ(α)}}, g^{α-β}) \cdot e(g^{f(β)} \cdot h^{\hat{f(β)}}, g) \newline = e(g^{φ(α)+\lambda\hat{φ(α)}}, g^{α-β}) \cdot e(g^{f(β)+\lambda\hat{f(β)}}, g) \newline = e(g,g)^{φ(α) \cdot (α-β)+\lambda\hat{φ(α)} \cdot (α-β) + f(β) + \lambda\hat{f(β)}} \newline = e(g,g)^{φ(α) \cdot (α-β)+ f(β) + \lambda \cdot(\hat{φ(α)} \cdot (α-β) + \hat{f(β)})} \]

根据商多项式的定义,有:\(f(α) - f(β) = φ(α) \cdot (α-β)\),\(\hat{f(α)} - \hat{f(β)} = \hat{φ(α)} \cdot (α-β)\),因此:

\[e(w, g^{α}/g^{β}) \cdot e(g^{f(β)} \cdot h^{\hat{f(β)}}, g) \newline = e(g,g)^{φ(α) \cdot (α-β)+ f(β) + \lambda \cdot(\hat{φ(α)} \cdot (α-β) + \hat{f(β)})} \newline = e(g,g)^{f(α) - f(β)+ f(β) + \lambda \cdot(\hat{f(α)} - \hat{f(β)} + \hat{f(β)})} \newline = e(g,g)^{f(α) + \lambda \cdot \hat{f(α)}} \newline = e(g^{f(α)} \cdot g^{\lambda \cdot \hat{f(α)}}, g) \newline = e(g^{f(α)} \cdot h^{\hat{f(α)}}, g) \newline = e(C, g) \]

因此,\(e(C, g) = e(w, g^{α}/g^{β}) \cdot e(g^{f(β)} \cdot h^{\hat{f(β)}}, g)\),验证通过。

结语

Kate多项式承诺是一种实用性比较强的多项式承诺方案,通过点打开的方式,可以在保护多项式隐私的同时,有效减少通信量。Kate多项式承诺在零知识证明、可验证密码共享等领域有广泛应用。了解Kate多项式承诺的原理和构造,对于学习zk-snarks、zk-starks等零知识证明协议是非常有帮助的。通过本文的介绍,希望读者能够对Kate多项式承诺有一个初步的了解,并为进一步学习零知识证明协议打下基础。

参考文献

标签:承诺,cdot,多项式,newline,密码学,hat,Kate
From: https://www.cnblogs.com/informatics/p/18456902

相关文章

  • 密码学承诺之原理和应用 - pedersen承诺
    主页微信公众号:密码应用技术实战博客园首页:https://www.cnblogs.com/informatics/GIT地址:https://github.com/warm3snow简介在上一篇文章《密码学承诺之原理和应用-概览》中,我们详细介绍了常见的密码学承诺原理,本节我们将重点介绍Pedersen承诺的实现和应用。在区块链技......
  • 密码学承诺之原理和应用 - sigma承诺
    微信公众号:密码应用技术实战博客园首页:https://www.cnblogs.com/informatics/GIT地址:https://github.com/warm3snow简介在上一篇文章《密码学承诺之原理和应用-概览》中,我们详细介绍了常见的密码学承诺原理,本节我们将重点介绍Sigma承诺的实现和应用。Sigma承诺Sigma承诺是......
  • 密码学承诺原理与应用 - 概览
    作者:@warm3snowhttps://github.com/warm3snow微信公众号:密码应用技术实战博客园首页:https://www.cnblogs.com/informatics/标签:技术分享模板目录简介承诺方案原理符号定义方案定义常见承诺方案和原理哈希承诺ElGamal承诺Pedersen承诺零知识证明承诺Sigma承诺Sigma承诺正确......
  • CTF密码学基础知识整理
    一.常见编码转换(1)整数转ascii码INT->CHAR:chr(97)CHAR->INT:ord('a')(2)hex转ASCII>>>importbinascii>>>binascii.a2b_hex('666c6167')b'flag'>>>binascii.b2a_hex(b'flag')b'666c6167&......
  • 密码学初识
    咱也是学上密码学了密码?可能有人要说:啊!这个我懂!不就是账号密码什么的嘛可能还有人说:啊!这个我懂!我还会背摩斯密码呢!但是,“密码学”研究的主要是加密与解密的过程它这个“密码”指的不是寻常说的password(口令),而是cryptography历史上,密码学经过了从古典到近代再到现代的发......
  • 基于OpenSSL的密码管理系统-应用密码学课程报告
    第1章概要设计1.1设计目的本研究旨在设计并实现一个基于OpenSSL的密码管理系统,该系统具备密钥对的生成、密钥上传、密钥的核对、身份认证、文件与邮件的加密和解密、数字签名及数字证书管理等常用功能。研究的意义主要体现在以下几个方面:提升网络信息安全水平:通过集成多种密......
  • 密码学简述
    密码学发展概述密码学应用非常广泛大致的讲就是从古典密码学到现代密码学这两者有一个最大的不同在于:kerckhoff法则kerckhoff法则:加密不应该依赖于加密算法的保密性而是要依赖于秘钥的保密性即使加密算法开源攻击者得不到秘钥就无法通过密文解出明文古典密码学:加密的......
  • 【图像去噪(Image Denoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介
    文章目录前言适配人群专栏简介专栏亮点阅读方法定价理由品质承诺关于更新环境配置去噪概述文章目录资料汇总(持续更新中。。。)问题汇总(持续更新中。。。)前言先思考几个问题:你是否在全网苦寻【图像去噪(ImageDenoising)】的相关资料?你的目标是否是看懂【图像去噪(Image......
  • 读软件开发安全之道:概念、设计与实施08密码学(下)
    1. 对称加密1.1. symmetricencryption1.2. 使用各方共享的密钥来隐藏数据1.2.1. 对称加密在本质上依赖共享密钥1.3. 所有加密都是通过对明文进行转换,把明文消息(或者原始消息)变成无法识别的形式(也称为密文)​,从而隐藏原始消息内容的1.4. 可逆的转换称为对称加密,因为......
  • 读软件开发安全之道:概念、设计与实施07密码学(上)
    1. 加密工具1.1. 加密工具之所以没有得到充分使用,就是因为人们往往认为密码学是一个准入门槛极高的专业领域1.2. 如今的加密学大部分都源自纯数学,所以只要能够正确使用,加密学确实行之有效1.2.1. 不代表这些算法本身确实无法破解,而是需要数学领域出现重大突破才能实现破解......