逆矩阵
因式分解求逆矩阵
行列式
范德蒙德行列式
每行/列元素之和相等
递推/归纳
1.
2.
\(\begin{vmatrix}
a+b & ab & 0 & \cdots & 0\\
1 & a+b & ab & \cdots & 0\\
\\ & \ddots & \ddots & \ddots\\
\\
& &\ddots & a+b & ab
\\
& & & 1 & a+b
\end{vmatrix}=?\)
解:
杂项
1.
\[A_{3\times 3} ,已知a_{ij}+A_{ij}=0,则\left\vert A \right\vert=? \]解:
\[a_{ij}+A_{ij}=0 \rightarrow A^{T}=-A^{*}\rightarrow\left\vert A \right\vert =\left\vert A^{T} \right\vert =-\left\vert A^{*} \right\vert =-\left\vert A \right\vert ^{2} \therefore \left\vert A \right\vert =0/ -1 \]\[\because \left\vert A \right\vert= a_{11}A_{11}+a_{12}A_{12}+a_{13}A_{13}=-(a_{11}^{2}+a_{12}^{2}+a_{13}^{2})\neq 0 \]\[\therefore \left\vert A \right\vert=-1 \] 标签:right,ddots,ij,错题,ab,left,vert From: https://www.cnblogs.com/zjxxinseu/p/16831925.html