首页 > 其他分享 >工厂人员作业现场异常违规行为识别 Opencv

工厂人员作业现场异常违规行为识别 Opencv

时间:2024-09-25 10:23:35浏览次数:8  
标签:违规行为 self torch 作业 工厂 Opencv grid 识别


工厂人员作业现场异常违规行为识别告警系统具有以下优势:工厂人员作业现场异常违规行为识别通过应用先进的图像识别技术,系统能够对工厂人员的作业行为进行高精度识别,包括电力作业过程中的关键节点和动作。工厂人员作业现场异常违规行为识别一旦系统识别到违规不符合要求的作业行为,将立即进行抓拍,并自动触发告警机制,向工厂管理者发送告警信息,确保异常行为得到及时处理。工厂人员作业现场异常违规行为识别能够对每次识别到的异常违规行为进行记录,包括时间、地点和相关信息等,为后续的审核和管理提供依据。

 OpenCV的全称是Open Source Computer Vision Library,是一个跨平台的计算机视觉处理开源软件库,是由Intel公司俄罗斯团队发起并参与和维护,支持与计算机视觉和机器学习相关的众多算法,以BSD许可证授权发行,可以在商业和研究领域中免费使用。OpenCV可用于开发实时的图像处理、计算机视觉以及模式识别程序,该程序库也可以使用英特尔公司的IPP进行加速处理。OpenCV基于C++实现,同时提供python, Ruby, Matlab等语言的接口。OpenCV-Python是OpenCV的Python API,结合了OpenCV C++API和Python语言的最佳特性。OpenCV可以在不同的系统平台上使用,包括Windows,Linux,OS,X,Android和iOS。基于CUDA和OpenCL的高速GPU操作接口也在积极开发中。

工厂人员作业现场异常违规行为识别 Opencv_神经网络

工厂作业现场的安全管理一直以来都是工厂管理者非常关注的问题。为了及时发现和纠正人员违规行为,以及确保电力作业符合要求,我们推出了工厂人员作业现场异常违规行为识别告警系统。工厂人员作业现场异常违规行为识别基于先进的图像识别和分析技术,能够准确识别工厂人员的行为是否合规,并发现并抓拍违规不符合要求的作业行为,实时产生告警信息。我们相信,工厂人员作业现场异常违规行为识别告警系统将成为工厂安全管理的重要辅助工具。工厂人员作业现场异常违规行为识别告警系统的推广和应用将为工厂的生产经营带来更高效和更安全的工作环境,实现工厂的可持续发展。

class Detect(nn.Module):
    stride = None  # strides computed during build
    onnx_dynamic = False  # ONNX export parameter

    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
        super().__init__()
        self.nc = nc  # number of classes
        self.no = nc + 5  # number of outputs per anchor
        self.nl = len(anchors)  # number of detection layers
        self.na = len(anchors[0]) // 2  # number of anchors
        self.grid = [torch.zeros(1)] * self.nl  # init grid
        self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
        self.inplace = inplace  # use in-place ops (e.g. slice assignment)

    def forward(self, x):
        z = []  # inference output
        for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

            if not self.training:  # inference
                if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

                y = x[i].sigmoid()
                if self.inplace:
                    y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                    xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                    y = torch.cat((xy, wh, y[..., 4:]), -1)
                z.append(y.view(bs, -1, self.no))

        return x if self.training else (torch.cat(z, 1), x)

    def _make_grid(self, nx=20, ny=20, i=0):
        d = self.anchors[i].device
        if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
            yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
        else:
            yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
        grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
        anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
            .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
        return grid, anchor_grid

工厂人员作业现场异常违规行为识别告警系统的工作原理如下:工厂人员作业现场异常违规行为识别在工厂作业现场布置摄像设备,并建立与中央控制站的连接。工厂人员作业现场异常违规行为识别通过实时监控现场情况,将视频流传输至中央控制站或相关终端设备。工厂人员作业现场异常违规行为识别运用先进的图像识别技术,分析监测到的视频流,识别工厂人员的行为是否合规。工厂人员作业现场异常违规行为识别告警系统可以广泛应用于各类工厂场所,工厂人员作业现场异常违规行为识别通过图像识别技术的应用,帮助工厂管理者及时发现并纠正违规行为,确保作业过程的安全和合规性。

标签:违规行为,self,torch,作业,工厂,Opencv,grid,识别
From: https://blog.51cto.com/u_16270964/12107589

相关文章

  • AI识别工人安全绳佩戴告警系统 YOLOv7
    AI识别工人安全绳佩戴告警系统是一种基于人工智能技术的创新解决方案。AI识别工人安全绳佩戴告警系统基于电力作业场景和工地及工厂高空人员作业是否穿戴安全绳进行识别预警,AI识别工人安全绳佩戴告警系统通过智能化图像识别和分析,实时监测工人的安全绳佩戴情况,并在发现异常时进行告......
  • 打架斗殴监测识别系统 YOLOv3
    打架斗殴监测识别系统具有以下优势:打架斗殴监测识别系统通过高清摄像头等监测设备对校园和工地作业场所进行智能监测,实时捕捉到打架斗殴行为。打架斗殴监测识别系统采用先进的图像处理和机器学习算法,能够自动识别和分析出打架斗殴的行为特征。一旦系统检测到打架斗殴行为,将自动触发......
  • 安全生产作业现场违规行为识别预警系统 CNN
    安全生产作业现场违规行为识别预警系统具有以下优势:安全生产作业现场违规行为识别预警系统通过智能摄像头对工厂现场进行实时监控,利用先进的识别技术对人员的行为和电力作业行为进行实时识别和分析。安全生产作业现场违规行为识别预警系统预先设定了各种合规行为和违规行为的模型,当......
  • OpenCV_图像的平滑处理详解
    图像平滑处理是图像处理中的一种技术,旨在减少图像中的噪声和细节,从而使图像看起来更平滑。平滑处理可以帮助改善图像质量,去除噪声,并在进一步的图像分析和处理步骤中提供更清晰的数据。常见的平滑处理技术包括滤波、模糊等。例如,下图1是含有噪声的图像,在图像内存在噪声信息,我们......
  • OpenCV_自定义线性滤波(filter2D)应用详解
    OpenCVfilter2D将图像与内核进行卷积,将任意线性滤波器应用于图像。支持就地操作。当孔径部分位于图像之外时,该函数根据指定的边界模式插值异常像素值。卷积核本质上是一个固定大小的系数数组,数组中的某个元素被作为锚点(一般是数组的中心)。上面讲了线性滤波的实质就是计算相......
  • 骑电动车不戴头盔识别抓拍系统
    骑电动车不戴头盔识别抓拍系统通过计算机深度学习技术,骑电动车不戴头盔识别抓拍系统对于骑乘电动车摩托车电动三轮车戴帽子没带头盔的也包括骑乘人员和带乘人员,骑电动车不戴头盔识别抓拍系统可自动识别抓拍和报警同步回传给后台监控大数据平台。骑电动车不戴头盔识别抓拍系统对于......
  • 智慧工地安全帽智能识别系统
    智慧工地安全帽智能识别系统通过opencv深度学习技术,智慧工地安全帽智能识别系统可自动检测识别作业现场人员有没有戴安全帽,当智慧工地安全帽智能识别系统检测出现场施工作业人员没有按照要求戴安全帽时,立即抓拍存档并同步回传违规数据到后台监控大数据平台,并提醒后台人员及时处理......
  • 煤矿人员工服着装智能识别监测系统
    煤矿人员工服着装智能识别监测系统在摄像头监控画面中自动检测作业人员是否正确着装,煤矿人员工服着装智能识别监测系统若发现有现场作业人员没有按要求正确佩戴安全帽、穿着工服,煤矿人员工服着装智能识别监测系统会立即抓拍存档回传后台大数据监控管理平台,现场同时进行语音播报提......
  • 绝缘手套穿戴智能识别系统
    绝缘手套穿戴智能识别系统通过opencv深度学习技术赋能现场摄像头,绝缘手套穿戴智能识别系统对现场电力作业人员在带电设备上作业施工时有没有按厂区要求佩戴绝缘手套进行识别检测,当绝缘手套穿戴智能识别系统检测到现场电力作业人员违规行为即未佩戴绝缘手套时立刻抓拍告警,绝缘手套......
  • 人员超员识别系统
    人员超员识别系统通过yolo深度学习网络模型对工厂车间生产区域进行实时监测,当人员超员识别系统监测到监控画面中区域人数超过规定人数时,人员超员识别系统立即抓拍存档预警并回传到后台监控平台提醒后台人员及时处理避免发生更大的危险情况。人员超员识别系统保障了危化品业生产安......