首页 > 其他分享 >打架斗殴监测识别系统 YOLOv3

打架斗殴监测识别系统 YOLOv3

时间:2024-09-25 10:21:54浏览次数:8  
标签:torch YOLOv3 self 识别系统 grid 监测 打架斗殴


打架斗殴监测识别系统具有以下优势:打架斗殴监测识别系统通过高清摄像头等监测设备对校园和工地作业场所进行智能监测,实时捕捉到打架斗殴行为。打架斗殴监测识别系统采用先进的图像处理和机器学习算法,能够自动识别和分析出打架斗殴的行为特征。一旦系统检测到打架斗殴行为,将自动触发告警,并及时通知相关人员进行处置。

2018年,作者Redmon又在YOLOv2的基础上做了一些改进。特征提取部分采用Darknet-53网络结构代替原来的Darknet-19,利用特征金字塔网络结构实现了多尺度检测,分类方法使用逻辑回归代替了softmax,在兼顾实用性的同时保证了目标检测的准确性。从YOLOv1到YOLOv3,每一代性能的提升都与backbone(骨干网络)的改进密切相关。在YOLOv3中,作者不仅提供了darknet-53,还提供了轻量级的tiny-darknet。如果你想检测精度与速度兼备,可以选择darknet-53作为backbone;如果你想达到更快的检测速度,精度方面可以妥协。那么tiny-darknet是你很好的选择。总之,YOLOv3的灵活性使得它在实际工程中得到很多人的青睐。

打架斗殴监测识别系统 YOLOv3_YOLO

打架斗殴是一种严重的违法行为,无论是在校园还是工地作业场所,都会给人们的生命安全和社会秩序带来严重威胁。为了及时发现和制止这些打架斗殴事件,打架斗殴监测识别系统应运而生。打架斗殴监测识别系统基于先进的监测和识别技术,能够自动监测、识别并报警校园学生打架斗殴行为和工地作业人员打架行为。

class Detect(nn.Module):
    stride = None  # strides computed during build
    onnx_dynamic = False  # ONNX export parameter

    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
        super().__init__()
        self.nc = nc  # number of classes
        self.no = nc + 5  # number of outputs per anchor
        self.nl = len(anchors)  # number of detection layers
        self.na = len(anchors[0]) // 2  # number of anchors
        self.grid = [torch.zeros(1)] * self.nl  # init grid
        self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
        self.inplace = inplace  # use in-place ops (e.g. slice assignment)

    def forward(self, x):
        z = []  # inference output
        for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

            if not self.training:  # inference
                if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

                y = x[i].sigmoid()
                if self.inplace:
                    y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                    xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                    y = torch.cat((xy, wh, y[..., 4:]), -1)
                z.append(y.view(bs, -1, self.no))

        return x if self.training else (torch.cat(z, 1), x)

    def _make_grid(self, nx=20, ny=20, i=0):
        d = self.anchors[i].device
        if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
            yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
        else:
            yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
        grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
        anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
            .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
        return grid, anchor_grid

打架斗殴监测识别系统的工作原理如下:打架斗殴监测识别系统在校园和工地作业场所的关键区域安装高清摄像头,对人员活动进行全天候监测。打架斗殴监测识别系统通过图像处理算法分析监测到的视频流,提取出打架斗殴的行为特征。打架斗殴监测识别系统可以广泛应用于校园和工地作业场所等地方,通过智能监测和识别技术的应用,系统能够快速发现和制止打架斗殴行为,保障人们的生命安全和社会秩序。

标签:torch,YOLOv3,self,识别系统,grid,监测,打架斗殴
From: https://blog.51cto.com/u_16270964/12107602

相关文章

  • 智慧工地安全帽智能识别系统
    智慧工地安全帽智能识别系统通过opencv深度学习技术,智慧工地安全帽智能识别系统可自动检测识别作业现场人员有没有戴安全帽,当智慧工地安全帽智能识别系统检测出现场施工作业人员没有按照要求戴安全帽时,立即抓拍存档并同步回传违规数据到后台监控大数据平台,并提醒后台人员及时处理......
  • 绝缘手套穿戴智能识别系统
    绝缘手套穿戴智能识别系统通过opencv深度学习技术赋能现场摄像头,绝缘手套穿戴智能识别系统对现场电力作业人员在带电设备上作业施工时有没有按厂区要求佩戴绝缘手套进行识别检测,当绝缘手套穿戴智能识别系统检测到现场电力作业人员违规行为即未佩戴绝缘手套时立刻抓拍告警,绝缘手套......
  • 人员超员识别系统
    人员超员识别系统通过yolo深度学习网络模型对工厂车间生产区域进行实时监测,当人员超员识别系统监测到监控画面中区域人数超过规定人数时,人员超员识别系统立即抓拍存档预警并回传到后台监控平台提醒后台人员及时处理避免发生更大的危险情况。人员超员识别系统保障了危化品业生产安......
  • PCB板缺陷检测机器视觉识别系统
    PCB板缺陷检测机器视觉识别系统对PCB电路板全流程实时监测,当PCB板缺陷检测机器视觉识别系统监测到有缺陷的PCB板时立即抓拍存档告警及时提醒。PCB板缺陷检测机器视觉识别系统算法主要在工业自动化场景中自动检测PCB板上的常见缺陷。当检测到PCB存在缺陷,立即告警,并上报事件到管理平......
  • AI检测人员工衣工服着装不规范识别系统
    AI检测人员工衣工服着装不规范识别系统基于现场监控视频流,AI检测人员工衣工服着装不规范识别系统利用最新的计算机深度学习与边缘分析技术,不需人工干预,AI检测人员工衣工服着装不规范识别系统自动识别人员工衣工服着装是否规范,为工厂工地等安全作业生产保驾护航。AI检测人员工衣工......
  • 抽烟打电话行为识别系统
    抽烟打电话行为识别系统对监控画面区域进行7*24小时实时监测,当抽烟打电话行为识别系统监测到现场有人抽烟或者打电话时,立即抓拍存档告警及时将违规信息回传给后台及时处理。抽烟打电话识别系统不需新增硬件实现对工厂车间或者工地等人员违规抽烟、打电话等违规行为实现自动识别和......
  • 基于卷积神经网络的布料、布匹原料识别系统,resnet50,mobilenet模型【pytorch框架+pytho
       更多目标检测和图像分类识别项目可看我主页其他文章功能演示:基于卷积神经网络的布料、布匹原料识别系统,resnet50,mobilenet【pytorch框架,python,tkinter】_哔哩哔哩_bilibili(一)简介基于卷积神经网络的布料、布匹原料识别系统是在pytorch框架下实现的,这是一个完整的项目......
  • 工厂明火烟雾视频监控识别系统 烟火自动识别预警
    工厂明火烟雾视频监控识别系统烟火自动识别预警可以自动识别监控区域内的烟火,工厂明火烟雾视频监控识别系统烟火自动识别预警发现火焰及烟雾系统可以实时发出预警信息并同步传给后台监控相关人员,有效的协助后台人员降低误报和漏报现象及时处理火灾危机,将火灾危险消灭在萌芽当中......
  • 河道非法采砂识别系统
    河道非法采砂识别系统利用河道两旁摄像头自动对指定区域进行实时检测,一旦河道非法采砂识别系统检测到人员非法采砂时,无需人工干预系统会自动告警,同步回传监控管理中心,提醒后台相关人员及时处理。河道非法采砂识别系统对河道区域进行进行7*24小时不间断实时监测,当监测到有人非法采......
  • 渣土车空车未盖盖识别系统
    渣土车空车未盖盖识别系统通过OpenCv+yolo网络实时监控路过的渣土车情况,渣土车空车未盖盖识别系统对没有盖盖或者空车的渣土车进行抓拍。渣土车空车未盖盖识别系统利用城市道路两旁的监控摄像头对交通来往车辆进行识别抓拍,若是空车或者没有盖盖,即会抓拍同步将截图发给后台监控系统......