首页 > 其他分享 >Transformer王者归来!无需修改任何模块,时序预测全面领先

Transformer王者归来!无需修改任何模块,时序预测全面领先

时间:2024-09-24 14:55:27浏览次数:13  
标签:Transformer 变量 王者 模型 时序 iTransformer 预测


前言

近年来,Transformer在自然语言处理以及计算机视觉任务中取得了不断突破,成为深度学习领域的基础模型。

受此启发,众多Transformer模型变体在时间序列领域中被提出。

然而,最近越来越多的研究发现,使用简单的基于线性层搭建的预测模型,就能取得比各类魔改Transformer更好的效果。

最近,针对有关Transformer在时序预测领域有效性的质疑,清华大学软件学院机器学习实验室和蚂蚁集团学者合作发布了一篇时间序列预测工作,在Reddit等论坛上引发热烈讨论。

其中,作者提出的iTransformer,考虑多维时间序列的数据特性,未修改任何Transformer模块,而是打破常规模型结构,在复杂时序预测任务中取得了全面领先,试图解决Transformer建模时序数据的痛点。

Transformer王者归来!无需修改任何模块,时序预测全面领先_人工智能

论文地址:https://arxiv.org/abs/2310.06625

代码实现:https://github.com/thuml/Time-Series-Library

在iTransformer的加持下,Transformer完成了在时序预测任务上的全面反超。

Transformer王者归来!无需修改任何模块,时序预测全面领先_深度学习_02

问题背景

现实世界的时序数据往往是多维的,除了时间维之外,还包括变量维度。

每个变量可以代表不同的观测物理量,例如气象预报中使用的多个气象指标(风速,温度,湿度,气压等),也可以代表不同的观测主体,例如发电厂不同设备的每小时发电量等。

一般而言,不同的变量具有完全不同的物理含义,即使语义相同,其测量单位也可能完全不同。

以往基于Transformer的预测模型通常先将同一时刻下的多个变量嵌入到高维特征表示(Temporal Token),使用前馈网络(Feed-forward Network)编码每个时刻的特征,并使用注意力模块(Attention)学习不同时刻之间的相互关联。

然而,这种方式可能会存在如下问题:

Transformer王者归来!无需修改任何模块,时序预测全面领先_深度学习_03

设计思路

不同于自然语言中的每个词(Token)具有较强的独立语义信息,在同为序列的时序数据上,现有Transformer视角下看到的每个「词」(Temporal Token)往往缺乏语义性,并且面临时间戳非对齐与感受野过小等问题。

也就是说,传统Transformer的在时间序列上的建模能力被极大程度地弱化了。

为此,作者提出了一种全新的倒置(Inverted)视角。

如下图,通过倒置Transformer原本的模块,iTransformer先将同一变量的整条序列映射成高维特征表示(Variate Token),得到的特征向量以变量为描述的主体,独立地刻画了其反映的历史过程。

此后,注意力模块可天然地建模变量之间的相关性(Mulitivariate Correlation),前馈网络则在时间维上逐层编码历史观测的特征,并且将学到的特征映射为未来的预测结果。

相比之下,以往没有在时序数据上深入探究的层归一化(LayerNorm),也将在消除变量之间分布差异上发挥至关重要的作用。

Transformer王者归来!无需修改任何模块,时序预测全面领先_人工智能_04

iTransformer

整体结构

不同于以往Transformer预测模型使用的较为复杂的编码器-解码器结构,iTransformer仅包含编码器,包括嵌入层(Embedding),投影层(Projector)和L个可堆叠的Transformer模块(TrmBlock)。

Transformer王者归来!无需修改任何模块,时序预测全面领先_transformer_05

建模变量的特征表示

Transformer王者归来!无需修改任何模块,时序预测全面领先_语言模型_06

模块分析

调转了Transformer模块处理时序数据的维度后,这篇工作重新审视了各模块在iTransformer中的职责。

  1. **层归一化:**层归一化的提出最初是为了提高深度网络的训练的稳定性与收敛性。

在以往Transformer中,该模块将同一时刻的的多个变量进行归一化,使每个变量杂糅无法区分。一旦收集到的数据没有按时间对齐,该操作还将引入非因果或延迟过程之间的交互噪声。

Transformer王者归来!无需修改任何模块,时序预测全面领先_语言模型_07

而在倒置版本中(公式如上),层归一化应用于每个变量的特征表示(Variate Token),让所有变量的特征通道都处于相对统一的分布下。

这种归一化的思想在处理时间序列非平稳问题时已经被广泛证明是有效的,只是在iTransformer中可以自然而然的通过层归一化实现。

此外,由于所有变量的特征表示都被归一化到正态分布,由变量取值范围不同造成的差异可以减弱。

相反,在此前的结构中,所有时间戳的特征表示(Temporal Token)将被统一标准化,导致模型实际看到的是过平滑的时间序列。

  1. **前馈网络:**Transformer利用前馈网络编码词向量。

此前模型中形成「词」向量的是同一时间采集的多个变量,他们的生成时间可能并不一致,并且反映一个时间步的「词」很难提供足够的语义。

在倒置版本中,形成「词」向量的是同一变量的整条序列,基于多层感知机的万能表示定理,其具备足够大的模型容量来提取在历史观测和未来预测中共享的时间特征,并使用特征外推为预测结果。

另一个使用前馈网络建模时间维的依据来自最近的研究,研究发现线性层擅长学习任何时间序列都具备的时间特征。

对此,作者提出了一种合理的解释:线性层的神经元可以学习到如何提取任意时间序列的内在属性,如幅值,周期性,甚至频率谱(傅立叶变换实质是在原始序列上的全连接映射)。

因此相较以往Transformer使用注意力机制建模时序依赖的做法,使用前馈网络更有可能完成在未见过的序列上的泛化。

  1. **自注意力:**自注意力模块在该模型中用于建模不同变量的相关性,这种相关性在有物理知识驱动的复杂预测场景中(例如气象预报)是极其重要的。

作者发现自注意力图(Attention Map)的每个位置满足如下公式:

Transformer王者归来!无需修改任何模块,时序预测全面领先_ai_08

其中

Transformer王者归来!无需修改任何模块,时序预测全面领先_ai_09

对应任意两个变量的Query和Key向量,作者认为整个注意力图可以在一定程度上揭示变量的相关性,并且在后续基于注意力图的加权操作中,高度相关的变量将在与其Value向量的交互中获得更大的权重,因此这种设计对多维时序数据建模更为自然和可解释。

综上所述,在iTransformer中,层归一化,前馈网络以及自注意力模块考虑了多维时序数据本身的特点,三者系统性互相配合,适应不同维度的建模需求,起到1+1+1 > 3的效果。

实验分析

作者在六大多维时序预测基准上进行了广泛的实验,同时在支付宝交易平台的线上服务负载预测任务场景的数据(Market)中进行了预测。

Transformer王者归来!无需修改任何模块,时序预测全面领先_语言模型_10

实验部分对比了10种不同的预测模型,包含领域代表性Transformer模型:PatchTST(2023)、Crossformer(2023)、FEDformer(2022)、Stationary(2022)、Autoformer(2021)、Informer(2021);线性预测模型:TiDE(2023)、DLinear(2023);TCN系模型:TimesNet(2023)、SCINet(2022)。

此外,文章分析了模块倒置给众多Transformer变体带来的增益,包括通用的效果提升,泛化到未知变量以及更加充分地利用历史观测等。

时序预测

如开篇雷达图所示,iTransformer在六大测试基准中均达到了SOTA,并在Market数据的28/30个场景取得最优效果(详见论文附录)。

Transformer王者归来!无需修改任何模块,时序预测全面领先_ai_11

在长时预测以及多维时间预测这一充满挑战的场景中,iTransformer全面地超过了近几年的预测模型。

iTransformer框架的通用性

在取得最佳效果的同时,作者在Reformer、Informer、Flowformer、Flashformer等Transformer变体模型上进行了倒置前后的对比实验,证明了倒置是更加符合时序数据特点的结构框架。

  1. 提升预测效果

通过引入所提出的框架,这些模型在预测效果上均取得了大幅度的提升,证明了iTransformer核心思想的通用性,以及受益于高效注意力研究进展的可行性。

Transformer王者归来!无需修改任何模块,时序预测全面领先_深度学习_12

  1. 泛化到未知变量

通过倒置,模型在推理时可以输入不同于训练时的变量数,文中将其与一种泛化策略——通道独立(Channel Independence)进行了对比,结果表明该框架在仅使用20%的变量时依然能够尽可能减少泛化误差。

Transformer王者归来!无需修改任何模块,时序预测全面领先_语言模型_13

  1. 使用更长历史观测

以往Transformer系模型的预测效果不一定随着历史观测的变长而提升,作者发现使用该框架后,模型在历史观测增加的情况下展现出了惊人的预测误差减小趋势,在一定程度上验证了模块倒置的合理性。

Transformer王者归来!无需修改任何模块,时序预测全面领先_ai_14

模型分析
  1. 模型消融实验

作者进行了消融实验验证iTransformer模块排布的合理性。结果表明在变量维使用自注意力,在时间维上使用线性层的建模方式在绝大部分数据集上都取得了最优效果。

Transformer王者归来!无需修改任何模块,时序预测全面领先_人工智能_15

  1. 特征表示分析

为了验证前馈网络能够更好地提取序列特征的观点,作者基于CKA(Centered Kernel Alignment)相似度进行特征表示分析。CKA相似度越低,代表模型底层-顶层之间的特征差异越大。

值得注意的是,此前研究表明,时序预测作为一种细粒度特征学习任务,往往偏好更高的CKA相似度。

作者对倒置前后的模型分别计算底层-顶层CKA,得到了如下的结果,印证了iTransformer学习到了更好的序列特征,从而达到了更好的预测效果。

Transformer王者归来!无需修改任何模块,时序预测全面领先_深度学习_16

  1. 变量相关性分析

如上图所示,作用在变量维的注意力机制在学习到的注意力图中展现出更加强的可解释性。通过对Solar-Energy数据集的样例进行了可视化,有如下观察:

  • 在浅层注意模块,学习到的注意力图与历史序列的变量相关性更加相似。
  • 当深层注意模块,学习到的注意力图与待预测序列的变量相关性更加相似。

这说明注意力模块学到了更加可解释的变量相关性,并且在前馈网络中进行了对历史观测的时序特征编码,并能够逐渐解码为待预测序列。

总结

作者受多维时间序列的本身的数据特性启发,反思了现有Transformer在建模时序数据的问题,提出了一个通用的时序预测框架iTransformer。

iTransformer框架创新地引入倒置的视角观察时间序列,使得Transformer模块各司其职,针对性完成时序数据两个维度的建模难题,展现出优秀的性能和通用性。

面对Transformer在时序预测领域是否有效的质疑,作者的这一发现可能启发后续相关研究,使Transformer重新回到时间序列预测的主流位置,为时序数据领域的基础模型研究提供新的思路。

最后的最后

感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。

因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。

为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

Transformer王者归来!无需修改任何模块,时序预测全面领先_ai_17

经典书籍阅读

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

Transformer王者归来!无需修改任何模块,时序预测全面领先_transformer_18

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

Transformer王者归来!无需修改任何模块,时序预测全面领先_深度学习_19

面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

Transformer王者归来!无需修改任何模块,时序预测全面领先_ai_20

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

Transformer王者归来!无需修改任何模块,时序预测全面领先_transformer_21

标签:Transformer,变量,王者,模型,时序,iTransformer,预测
From: https://blog.51cto.com/u_16163452/12099841

相关文章

  • 【AI大模型】在线蒸馏一次视觉Transformer搜索
    一、概要最近,Puretransformers在视觉任务方面显示出巨大的潜力。然而,它们在中小数据集中的准确性并不令人满意。尽管一些现有方法引入了CNN作为教师,通过蒸馏来指导训练过程,但教师和学生网络之间的差距将导致次优绩效。在这项工作中,研究员提出了一种新的具有在线蒸馏的One-shotVis......
  • 论文速递!时序预测!DCSDNet:双卷积季节性分解网络,应用于天然气消费预测过程
    本期推文将介绍一种新的时序预测方法:双卷积季节性分解网络(DualConvolutionwithSeasonalDecompositionNetwork,DCSDNet)在天然气消费预测的应用,这项研究发表于《AppliedEnergy》期刊。针对天然气消费的多重季节性和非规律性,推荐的文献提出了一种新的预测方法:双卷积季节性分解......
  • 创新首发!LightGBM+BO-Transformer-GRU多变量回归交通流量预测(Matlab)
    创新首发!秋日私语!LightGBM+BO-Transformer-GRU多变量回归交通流量预测(Matlab)目录创新首发!秋日私语!LightGBM+BO-Transformer-GRU多变量回归交通流量预测(Matlab)效果一览基本介绍程序设计参考资料效果一览基本介绍1.Matlab实现LightGBM+BO-Transformer-GRU多变量回归预测,LightGB......
  • 2024年JCR一区极光优化算法+分解对比!VMD-PLO-Transformer-BiLSTM多变量时间序列光伏功
    中秋献礼!2024年中科院一区极光优化算法+分解对比!VMD-PLO-Transformer-LSTM多变量时间序列光伏功率预测目录中秋献礼!2024年中科院一区极光优化算法+分解对比!VMD-PLO-Transformer-LSTM多变量时间序列光伏功率预测效果一览基本介绍程序设计参考资料效果一览基本介绍1.中秋献礼!2024年......
  • DeiT:Data-efficient Image Transformer(2020)
    Trainingdata-efficientimagetransformers&distillationthroughattention:通过注意力训练数据高效的图像转换器和蒸馏论文地址:https://arxiv.org/abs/2012.12877代码地址:https://github.com/facebookresearch/deit这篇论文在2020年12月23日首次提交,也就是在ViT提......
  • GEE 案例:如何利用LST脚本快速计算指定区域的LST和时序的LST
    目录简介代码单景LST代码Landsat LST时序结果引用引入的脚本ASTERemissivityLST脚本TPW脚本SWM系数SWM算法boardband脚本去云脚本FVC脚本NDVI脚本蒸散发脚本简介地表温度是指地球表面的温度,即地球表面空气与地面接触处的温度。地表温度受多种因素影响,......
  • Transformer模型-7- Decoder
    概述Decoder也是N=6层堆叠的结构,每层被分3层:两个注意力层和前馈网络层,同Encoder一样在主层后都加有Add&Norm,负责残差连接和归一化操作。Encoder与Decoder有三大主要的不同:第一层MaskedMulti-HeadAttention:采用Masked操作第二层Multi-HeadAttention:K,V矩阵是......
  • (182)时序收敛--->(32)时序收敛三二
    1目录(a)FPGA简介(b)Verilog简介(c)时钟简介(d)时序收敛三二(e)结束1FPGA简介(a)FPGA(FieldProgrammableGateArray)是在PAL(可编程阵列逻辑)、GAL(通用阵列逻辑)等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不......