首页 > 其他分享 >论文速递!时序预测!DCSDNet:双卷积季节性分解网络,应用于天然气消费预测过程

论文速递!时序预测!DCSDNet:双卷积季节性分解网络,应用于天然气消费预测过程

时间:2024-09-24 13:54:32浏览次数:18  
标签:预测 卷积 天然气 分解 DCSDNet 方法


本期推文将介绍一种新的时序预测方法:双卷积季节性分解网络(Dual Convolution withSeasonal Decomposition Network, DCSDNet)在天然气消费预测的应用,这项研究发表于《Applied Energy》期刊。

针对天然气消费的多重季节性和非规律性,推荐的文献提出了一种新的预测方法:双卷积季节性分解网络(DCSDNet)。所开发的方法应用MSTL分析多种季节模式。局部和全局卷积神经网络分别用于从数据中提取短期和长期特征。此外,还包括一个自回归模型来补偿有关过去消费的预测。实际天然气消费数据的实验验证了该方法相对于几种最新方法的优越性。

具体来说,论文的创新点主要有以下几点:

1)进行了多季节趋势分解(MSTL),将时间序列分解为多个季节模式、趋势和残差。随着季节模式与原始时间序列的分离,模型可以专注于学习主导时间序列演变的信号的趋势和残差的变化。

2)引入全局时间卷积来提取不规则信号的特征。全局和局部时间特征都被输入到自注意模块中。因此,该模型在捕获全局和局部特征模式方面非常强大。

3)为了解决模型的非线性对输入尺度不敏感的问题,引入了自回归分量。

4)收集了2016年1月至2021年6月的城市实际天然气消费数据,以比较所提出方法与最先进方法的有效性。

论文速递!时序预测!DCSDNet:双卷积季节性分解网络,应用于天然气消费预测过程_卷积


标签:预测,卷积,天然气,分解,DCSDNet,方法
From: https://blog.51cto.com/u_15735367/12098825

相关文章

  • 创新首发!LightGBM+BO-Transformer-GRU多变量回归交通流量预测(Matlab)
    创新首发!秋日私语!LightGBM+BO-Transformer-GRU多变量回归交通流量预测(Matlab)目录创新首发!秋日私语!LightGBM+BO-Transformer-GRU多变量回归交通流量预测(Matlab)效果一览基本介绍程序设计参考资料效果一览基本介绍1.Matlab实现LightGBM+BO-Transformer-GRU多变量回归预测,LightGB......
  • 论文速递 | 基于MIC-ICEEMD-RIME-DHKELM的碳排放预测模型研究
    目录参考文献内容介绍作者擅长碳排放预测模型参考文献内容介绍本文提出了一种基于最大信息系数(MIC)特征提取、改进互补集合经验模态分解(ICEEMD)、雾凇优化算法(RIME)与深度混合核极限学习机(DHKELM)的建筑业碳排放量预测模型。首先,根据IPCC计算方法,从直接和间接两个方面测算1992-202......
  • 2024年JCR一区极光优化算法+分解对比!VMD-PLO-Transformer-BiLSTM多变量时间序列光伏功
    中秋献礼!2024年中科院一区极光优化算法+分解对比!VMD-PLO-Transformer-LSTM多变量时间序列光伏功率预测目录中秋献礼!2024年中科院一区极光优化算法+分解对比!VMD-PLO-Transformer-LSTM多变量时间序列光伏功率预测效果一览基本介绍程序设计参考资料效果一览基本介绍1.中秋献礼!2024年......
  • 机器学习实战25-用多种机器学习算法实现各种数据分析与预测
    大家好,我是微学AI,今天给大家介绍一下机器学习实战25-用多种机器学习算法实现各种数据分析与预测。本文主要介绍了使用机器学习算法进行数据分析的过程。首先阐述了项目背景,说明进行数据分析的必要性。接着详细介绍了机器学习算法中的随机森林、聚类分析以及异常值分析等方法......