• 2024-09-24Transformer王者归来!无需修改任何模块,时序预测全面领先
    前言近年来,Transformer在自然语言处理以及计算机视觉任务中取得了不断突破,成为深度学习领域的基础模型。受此启发,众多Transformer模型变体在时间序列领域中被提出。然而,最近越来越多的研究发现,使用简单的基于线性层搭建的预测模型,就能取得比各类魔改Transformer更好的效果。最近,针
  • 2024-08-25iTransformer时序模型改进——基于SENet和TCN的倒置Transformer,性能暴涨
    1数据集介绍ETT(电变压器温度):由两个小时级数据集(ETTh)和两个15分钟级数据集(ETTm)组成。它们中的每一个都包含2016年7月至2018年7月的七种石油和电力变压器的负载特征。 数据集链接:https://drive.google.com/drive/folders/1ZOYpTUa82_jCcxIdTmyr0LXQfvaM9vIy
  • 2024-06-22ICLR2024 | iTransformer: 倒置Transformer,刷新时序预测新纪录
    目录:1、引言---1.1 问题背景---1.2设计思路  2、相关工作---2.1Transformer系预测模型---2.2多变量时序数据的词构建3、iTransformer---3.1模型结构---3.2以变量为主体的特征表示---3.3模块分析4、实验分析---4.1时序预测---4.2框架能力1、引言 近