首页 > 其他分享 >【机器学习(九)】分类和回归任务-多层感知机 (MLP) -Sentosa_DSML社区版

【机器学习(九)】分类和回归任务-多层感知机 (MLP) -Sentosa_DSML社区版

时间:2024-09-20 16:51:16浏览次数:15  
标签:函数 pred print 感知机 MLP train Sentosa test

文章目录

一、算法概念

什么是多层感知机?
  多层感知机 (Multilayer Perceptron,MLP) 是一种人工神经网络,由多层神经元或节点组成,这些神经元或节点以分层结构排列。它是最简单且使用最广泛的神经网络之一,尤其适用于分类和回归等监督学习任务。
  多层感知器运作的核心原理在于反向传播,是用于训练网络的关键算法。在反向传播过程中,网络通过将误差从输出层反向传播到输入层来调整其权重和偏差。这个迭代过程可以微调模型的参数,使其能够随着时间的推移做出更准确的预测。
  MLP 通常包括以下部分:
  输入层:接收输入数据并将其传递到隐藏层。输入层中的神经元数量等于输入特征的数量。
  隐藏层:由一层或多层神经元组成,用于执行计算并转换输入数据。可以调整每层  中的隐藏层和神经元的数量,以优化网络性能。
  激活函数:对隐藏层中每个神经元的输出应用非线性变换。常见的激活函数包括 Sigmoid、ReLU、tanh 等。
  输出层:网络的最终输出,例如分类标签或回归目标。输出层中的神经元数量取决于具体的数据,例如分类问题中的类别数量。
  权重和偏差:可调节参数,决定相邻层神经元之间的连接强度以及每个神经元的偏差。这些参数在训练过程中学习,以尽量减少网络预测与实际目标值之间的差异。
  损失函数:衡量网络预测与实际目标值之间的差异。MLP 的常见损失函数包括回归任务的均方误差和分类任务的交叉熵。
  MLP 使用梯度下降等优化算法反向传播进行训练,根据损失函数的梯度迭代调整权重和偏差。这个过程持续到网络收敛到一组可最小化损失函数的最佳参数。

二、算法原理

(一)感知机

  感知机由两层神经元组成,输入层接收外界信号后传递给输出层,如下图所示,
在这里插入图片描述
  感知机模型就是尝试找到一条直线,能够把所有的二元类别分离开,给定输入 x \mathbf{x} x ,权重 W \mathbf{W} W ,和偏移 b b b ,感知机输出:
o = σ ( ⟨ w , x ⟩ + b ) o=\sigma\left( \langle\mathbf{w}, \mathbf{x} \rangle+b \right) o=σ(⟨w,x⟩+b)
σ ( x ) = { 1   x > 0 − 1   x ≤ 0 \quad\sigma( x )=\left\{\begin{array} {l l} {{1}} & {{\mathrm{~} x > 0}} \\ {{-1}} & {{\mathrm{~} x\leq0}} \\ \end{array} \right. σ(x)={1−1​ x>0 x≤0​
  初始化权重向量 w 和偏置 b,然后对于分类错误的样本不断更新w和b,直到所有样本都被正确分类。等价于使用批量大小为1的梯度下降,并使用如下的损失函数:
ℓ ( y , x , w ) = max ⁡ ( 0 , − y ⟨ w , x ⟩ ) \ell( y, {\bf x}, {\bf w} )=\operatorname* {m a x} ( 0,-y \langle{\bf w}, {\bf x} \rangle) ℓ(y,x,w)=max(0,−y⟨w,x⟩)
  感知机只能产生线性分割面,感知机算法的训练过程如下。
在这里插入图片描述

(二)多层感知机

1、隐藏层

  多层感知机则是在单层神经网络的基础上引入一个或多个隐藏层,使神经网络有多个网络层,下图为两个多层感知机示意图,分别为单隐层和双隐层
在这里插入图片描述
在这里插入图片描述
  多层感知机中的隐藏层和输出层都是全连接层,输入 X ∈ R n × d X \in\mathbb{R}^{n \times d} X∈Rn×d ,其中, n n n 是批量大小, d d d 是输入特征的数量。输出 O ∈ R n × q O \in\mathbb{R}^{n \times q} O∈Rn×q ,其中 q q q 是输出单元的数量。
  设隐藏层有 h h h 个隐藏单元,隐藏层的输出 H H H 是通过输入 X X X 与隐藏层的权重 W h ∈ R d × h W_{h} \in\mathbb{R}^{d \times h} Wh​∈Rd×h 和偏置 b h ∈ R 1 × h b_{h} \in\mathbb{R}^{1 \times h} bh​∈R1×h 计算得到的: H = X W h + b h H=X W_{h}+b_{h} H=XWh​+bh​
  输出层的权重为 W o ∈ R h × q W_{o} \in\mathbb{R}^{h \times q} Wo​∈Rh×q ,偏置为 b o ∈ R 1 × q b_{o} \in\mathbb{R}^{1 \times q} bo​∈R1×q 。因此,输出层的输出 O O O 为: O = H W o + b o O=H W_{o}+b_{o} O=HWo​+bo​
  将隐藏层的输出 H H H 代入到输出层的方程中,得到如下计算过程:
O = ( X W h + b h ) W o + b o = X W h W o + b h W o + b o O=( X W_{h}+b_{h} ) W_{o}+b_{o}=X W_{h} W_{o}+b_{h} W_{o}+b_{o} O=(XWh​+bh​)Wo​+bo​=XWh​Wo​+bh​Wo​+bo​
  通过联立后的式子可以看出,尽管引入了隐藏层,模型的计算仍然可以视作单层神经网络,其中,权重矩阵等于 W h W o W_{h} W_{o} Wh​Wo​,偏置等于 b h W o + b o b_{h} W_{o}+b_{o} bh​Wo​+bo​。
  这表示,尽管引入了隐藏层,在不采用非线性激活函数的情况下,这个设计只能等价于单层神经网络。引入隐藏层的真正意义在于通过非线性激活函数(如ReLU、Sigmoid等)来引入复杂的非线性关系,使得模型具备更强的表达能力。

2、激活函数

  激活函数是 MLP的关键组成部分。它们将非线性引入网络,使其能够对复杂问题进行建模。如果没有激活函数,无论有多少层,MLP都相当于单层线性模型。
激活函数需要具备以下几点性质:

  1. 连续并可导(允许少数点上不可导),便于利用数值优化的方法来学习网络参数
  2. 激活函数及其导函数要尽可能的简单,有利于提高网络计算效率
  3. 激活函数的导函数的值域要在合适区间内,不能太大也不能太小,否则会影响训练的效率和稳定性
    以下列举常用的三个激活函数
sigma函数

s i g m a ( z ) = 1 1 + exp ⁡ ( − z ) sigma( z )=\frac{1} {1+\operatorname{e x p} (-z )} sigma(z)=1+exp(−z)1​
  sigma函数也称为 S \mathrm{S} S 型函数,可以将任何实值数映射到 0 0 0 到 1 1 1 之间的值。呈S形,具有明确定义的非零导数,这使其适合与反向传播算法一起使用。
在这里插入图片描述
  sigmoid函数的导数表达式为:
s i g m a ′ ( z ) = s i g m a ( z ) × ( 1 − s i g m a ( z ) ) sigma^{\prime} ( z )=sigma( z ) \times( 1-sigma ( z ) ) sigma′(z)=sigma(z)×(1−sigma(z))
  如下所示:
在这里插入图片描述

tanh函数

tanh ⁡ ( z ) = 1 − exp ⁡ ( − 2 z ) 1 + exp ⁡ ( − 2 z ) \operatorname{t a n h} ( z )=\frac{1-\operatorname{e x p} (-2z )} {1+\operatorname{e x p} (-2z )} tanh(z)=1+exp(−2z)1−exp(−2z)​
  双曲正切函数与逻辑函数类似,但输出值在-1和 1 1 1 之间。这种居中效果有助于加快训练期间的收敛速度。
在这里插入图片描述
  tanh导数表达式如下所示:
t a n h ′ ( z ) = 1 − tanh ⁡ 2 ( z ) tanh^{\prime} ( z)=1-\operatorname{t a n h}^{2} ( z ) tanh′(z)=1−tanh2(z)
  下面绘制了tanh函数的导数。当输入为0时,tanh函数的导数达到最大值1;当输入越偏离0时,tanh函数的导数越接近0。
在这里插入图片描述

ReLU函数

R e L U ( z ) = max ⁡ ( 0 , z ) \mathrm{R e L U} ( z )=\operatorname* {m a x} ( 0, z ) ReLU(z)=max(0,z)
  ReLU 函数因其简单性和有效性而被广泛应用于深度学习。如果输入值为正,则输出输入值;否则输出零。尽管 ReLU 在零处不可微,并且对于负输入具有零梯度,但它在实践中表现良好,有助于缓解梯度消失问题
在这里插入图片描述
  当输入为负数时,ReLU函数的导数为0;当输入为正数时,ReLU函数的导数为1,
  ReLU 函数的导数表达式为:
R e L U ′ ( z ) = { 1 i f   z > 0 0 i f   z ≤ 0 R e L U^{\prime} ( z )=\begin{cases} {{1}} & {{\mathrm{i f ~} z > 0}} \\ {{0}} & {{\mathrm{i f ~} z \leq0}} \\ \end{cases} ReLU′(z)={10​if z>0if z≤0​
  下面绘制ReLU函数的导数,
在这里插入图片描述

3、反向传播算法

1、前向传播
  前向传播是反向传播的前提。在前向传播过程中,数据从输入层逐步传递至输出层,经过每一层的计算,最终得到预测输出。
  具体步骤如下:
  1、输入数据传递给神经网络的输入层。
  2、输入层经过一系列权重(W)和偏置(b)的线性运算,然后通过激活函数传递到隐藏层。
  3、逐层传递,直至数据到达输出层,输出层生成预测值 y ^ \hat{y} y^​ 。
  表达式如下:
y ^ = f ( W 3 ⋅ f ( W 2 ⋅ f ( W 1 ⋅ x + b 1 ) + b 2 ) + b 3 ) \hat{y}=f ( W_{3} \cdot f ( W_{2} \cdot f ( W_{1} \cdot x+b_{1} )+b_{2} )+b_{3} ) y^​=f(W3​⋅f(W2​⋅f(W1​⋅x+b1​)+b2​)+b3​)
  其中, W 1 , W 2 , W 3 W_{1}, W_{2}, W_{3} W1​,W2​,W3​ 是权重矩阵, b 1 , b 2 , b 3 b_{1}, b_{2}, b_{3} b1​,b2​,b3​ 是偏置, f ( ⋅ ) f ( \cdot) f(⋅) 是激活函数。
2、 损失函数
  在得到输出后,通过损失函数计算预测结果与真实标签之间的误差,常见的损失函数有:
  MSE(均方误差):通常用于回归问题,输出与标签之差的平方的均值。计算公式如下:
M S E = 1 n ∑ i = 1 n ( y i − y ^ i ) 2 MSE=\frac{1} {n} \sum_{i=1}^{n} ( y_{i}-\hat{y}_{i} )^{2} MSE=n1​i=1∑n​(yi​−y^​i​)2
  其中, y i y_{i} yi​ 是真实值, y ^ i \hat{y}_{i} y^​i​ 是预测值, n n n 是样本数量。
  CE(交叉熵损失):通常用于回归问题。计算公式如下:
H ( p , q ) = − ∑ i = 1 n p ( x i ) log ⁡ q ( x i ) H(p,q)=-\sum_{i=1}^{n}p(x_{i}) \operatorname{log}q(x_{i}) H(p,q)=−i=1∑n​p(xi​)logq(xi​)
  其中, p ( x i ) p ( x_{i} ) p(xi​) 是真实分布, q ( x i ) q ( x_{i} ) q(xi​) 是预测分布。
3、反向传播
  反向传播根据微积分中的链式规则,按相反的顺序从输入层遍历网络。用于权重更新,使网络输出更接近标签。
  假设有两个函数 y = f ( u ) y=f ( u ) y=f(u) 和 u = g ( x ) u=g ( x ) u=g(x) ,根据链式法则, y y y 对 x x x 的导数为:
∂ y ∂ x = ∂ y ∂ u ∂ u ∂ x \frac{\partial y} {\partial x}=\frac{\partial y} {\partial u} \frac{\partial u} {\partial x} ∂x∂y​=∂u∂y​∂x∂u​
  在神经网络中,损失函数 L L L 对某一层权重 W W W 的导数可以通过链式法则分解为:
∂ L ∂ W = ∂ L ∂ y ⋅ ∂ y ∂ W \frac{\partial L} {\partial W}=\frac{\partial L} {\partial y} \cdot\frac{\partial y} {\partial W} ∂W∂L​=∂y∂L​⋅∂W∂y​
4、梯度下降
  在反向传播过程中,利用梯度下降算法来更新权重,使得损失函数的值逐渐减小。权重更新的公式为:
W ( h ) = W ( o ) − η ⋅ ∂ L ∂ W W^{(h )}=W^{( o )}-\eta\cdot\frac{\partial L} {\partial W} W(h)=W(o)−η⋅∂W∂L​
  其中, η \eta η 是学习率,决定了每次权重调整的步长大小, ∂ L ∂ W \frac{\partial L} {\partial W} ∂W∂L​ 是损失函数相对于权重的梯度。

三、算法优缺点

(一)优点

  可以通过多个隐藏层和非线性激活函数,学习到更复杂的特征表示,从而提高模型的表达能力。
  可以用于分类、回归和聚类等各种机器学习任务,目在许多领域中取得了很好的效果。
  可以诵过并行计算和GPU加速等技术,高效地处理大规模数据集,适用于大规模深度学习应用。

(二)缺点

  参数较多,容易在训练集上过拟合,需要采取正则化、dropout等方法来缓解过拟合问题。
  通常需要大量的标记数据进行训练,并且在训练过程中需要较高的计算资源,包括内存和计算
能力。
  MLP的性能很大程度上依赖于超参数的选择。

四、MLP分类任务实现对比

(一)数据加载和样本分区

1、Python代码

from sklearn.datasets import load_iris

# 加载iris数据集
iris = load_iris()
X, y = iris['data'], iris['target']

# 样本分区
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

2、Sentosa_DSML社区版

  首先,利用数据读入中的文本算子对数据进行读取,
在这里插入图片描述
  然后连接样本分区算子划分训练集和测试集,
在这里插入图片描述
  再接类型算子,设置Feature列和Label列,
在这里插入图片描述

(二)模型训练

1、Python代码

  使用sklearn自动构建MLP模型

from sklearn.neural_network import MLPClassifier

# 定义MLP分类器模型,使用l-bfgs优化算法,隐藏层设置为100, 50,最大迭代次数200,设置tol为0.000001
mlp_clf = MLPClassifier(hidden_layer_sizes=(100, 50), max_iter=200, alpha=1e-4,
                        solver='lbfgs', tol=1e-6, random_state=42)
# 训练模型
mlp_clf.fit(X_train, y_train)

# 预测训练集和测试集
y_train_pred = mlp_clf.predict(X_train)
y_test_pred = mlp_clf.predict(X_test)

2、Sentosa_DSML社区版

  连接多层感知机分类算子,右击算子,点击运行,可以得到多层感知机分类模型。右侧进行超参数等设置,隐藏层设置为(100, 50),使用l-bfgs优化算法,最大迭代次数200,设置收敛偏差为0.000001。
在这里插入图片描述

(三)模型评估和模型可视化

1、Python代码

from sklearn.metrics import accuracy_score, precision_recall_fscore_support

# 计算训练集评估指标
accuracy_train = accuracy_score(y_train, y_train_pred)
precision_train, recall_train, f1_train, _ = precision_recall_fscore_support(y_train, y_train_pred, average='weighted')

# 计算测试集评估指标
accuracy_test = accuracy_score(y_test, y_test_pred)
precision_test, recall_test, f1_test, _ = precision_recall_fscore_support(y_test, y_test_pred, average='weighted')

# 输出训练集评估指标
print(f"Training Set Metrics:")
print(f"Accuracy: {accuracy_train * 100:.2f}%")
print(f"Weighted Precision: {precision_train:.2f}")
print(f"Weighted Recall: {recall_train:.2f}")
print(f"Weighted F1 Score: {f1_train:.2f}")

# 输出测试集评估指标
print(f"\nTest Set Metrics:")
print(f"Accuracy: {accuracy_test * 100:.2f}%")
print(f"Weighted Precision: {precision_test:.2f}")
print(f"Weighted Recall: {recall_test:.2f}")
print(f"Weighted F1 Score: {f1_test:.2f}")

from sklearn.metrics import confusion_matrix

# 计算测试集的混淆矩阵
conf_matrix = confusion_matrix(y_test, y_test_pred)

import matplotlib.pyplot as plt
from sklearn.inspection import permutation_importance

# 使用 sklearn 提供的permutation_importance方法计算特征重要性
result = permutation_importance(mlp_clf, X_test, y_test, n_repeats=10, random_state=42)

# 可视化特征重要性
plt.figure(figsize=(8, 6))
plt.barh(range(X.shape[1]), result.importances_mean, align='center')
plt.yticks(np.arange(X.shape[1]), iris['feature_names'])
plt.xlabel('Mean Importance Score')
plt.title('Permutation Feature Importance')
plt.show()

在这里插入图片描述

2、Sentosa_DSML社区版

  模型后可以连接评估算子,对模型的分类结果进行评估。算子流如下图所示,
在这里插入图片描述
  执行完成后可以得到训练集和测试集的评估,评估结果如下:
在这里插入图片描述
在这里插入图片描述
  右击模型,查看模型的模型信息,如下所示:
在这里插入图片描述

五、MLP回归任务实现对比

(一)数据加载和样本分区

1、Python代码

# 读入winequality数据集
df = pd.read_csv("D:/sentosa_ML/Sentosa_DSML/mlServer/TestData/winequality.csv")

# 将数据集划分为特征和标签
X = df.drop("quality", axis=1)  # 特征,假设标签是 "quality"
Y = df["quality"]  # 标签

# 划分数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=42)

2、Sentosa_DSML社区版

  首先通过数据读入算子读取数据,
在这里插入图片描述
  中间接样本分区算子对训练集和测试集进行划分,
在这里插入图片描述
  然后接类型算子,设置Feature列和Label列,
在这里插入图片描述

(二)模型训练

1、Python代码

使用 scikit-learn 库中的多层感知机回归模型(MLPRegressor)

# 对数据进行标准化
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

# 定义MLP回归模型,使用l-bfgs优化算法,隐藏层设置为50,10,最大迭代次数300,设置tol为0.000001
mlp_reg = MLPRegressor(hidden_layer_sizes=(50, 10), solver='lbfgs', max_iter=300, tol=1e-6, random_state=42)

# 训练模型
mlp_reg.fit(X_train_scaled, y_train)

2、Sentosa_DSML社区版

  连接标准化算子,对数据特征进行标准化计算,并执行得到标准化模型,
在这里插入图片描述
  其次,连接多层感知机回归算子,右击执行得到多层感知机回归模型。模型训练使用l-bfgs优化算法,隐藏层设置为50,10,最大迭代次数300,设置收敛偏差为0.000001,并选择计算特征重要性等。
在这里插入图片描述

(三)模型评估和模型可视化

1、Python代码

# 训练集上的评估
y_train_pred = mlp_reg.predict(X_train_scaled)

r2_train = r2_score(y_train, y_train_pred)
mae_train = mean_absolute_error(y_train, y_train_pred)
mse_train = mean_squared_error(y_train, y_train_pred)
rmse_train = np.sqrt(mse_train)
mape_train = np.mean(np.abs((y_train - y_train_pred) / y_train)) * 100
smape_train = 100 / len(y_train) * np.sum(2 * np.abs(y_train - y_train_pred) / (np.abs(y_train) + np.abs(y_train_pred)))

# 测试集上的评估
y_test_pred = mlp_reg.predict(X_test_scaled)

r2_test = r2_score(y_test, y_test_pred)
mae_test = mean_absolute_error(y_test, y_test_pred)
mse_test = mean_squared_error(y_test, y_test_pred)
rmse_test = np.sqrt(mse_test)
mape_test = np.mean(np.abs((y_test - y_test_pred) / y_test)) * 100
smape_test = 100 / len(y_test) * np.sum(2 * np.abs(y_test - y_test_pred) / (np.abs(y_test) + np.abs(y_test_pred)))

# 输出训练集评估指标
print(f"Training Set Metrics:")
print(f"R²: {r2_train:.2f}")
print(f"MAE: {mae_train:.2f}")
print(f"MSE: {mse_train:.2f}")
print(f"RMSE: {rmse_train:.2f}")
print(f"MAPE: {mape_train:.2f}%")
print(f"SMAPE: {smape_train:.2f}%")

# 输出测试集评估指标
print(f"\nTest Set Metrics:")
print(f"R²: {r2_test:.2f}")
print(f"MAE: {mae_test:.2f}")
print(f"MSE: {mse_test:.2f}")
print(f"RMSE: {rmse_test:.2f}")
print(f"MAPE: {mape_test:.2f}%")
print(f"SMAPE: {smape_test:.2f}%")

# 计算残差
residuals = y_test - y_test_pred

# 使用 Seaborn 绘制带核密度估计的残差直方图
plt.figure(figsize=(8, 6))
sns.histplot(residuals, kde=True, bins=20)
plt.title('Residuals Histogram with KDE')
plt.xlabel('Residuals')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()

在这里插入图片描述

2、Sentosa_DSML社区版

  模型后可接评估算子,对模型的回归结果进行评估。
在这里插入图片描述
  训练集和测试集的评估结果如下所示:
在这里插入图片描述
在这里插入图片描述
  右键查看模型信息,可以得到特征重要性等可视化计算结果。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

六、总结

  相比传统代码方式,利用Sentosa_DSML社区版完成机器学习算法的流程更加高效和自动化,传统方式需要手动编写大量代码来处理数据清洗、特征工程、模型训练与评估,而在Sentosa_DSML社区版中,这些步骤可以通过可视化界面、预构建模块和自动化流程来简化,有效的降低了技术门槛,非专业开发者也能通过拖拽和配置的方式开发应用,减少了对专业开发人员的依赖。
  Sentosa_DSML社区版提供了易于配置的算子流,减少了编写和调试代码的时间,并提升了模型开发和部署的效率,由于应用的结构更清晰,维护和更新变得更加容易,且平台通常会提供版本控制和更新功能,使得应用的持续改进更为便捷。

  为了非商业用途的科研学者、研究人员及开发者提供学习、交流及实践机器学习技术,推出了一款轻量化且完全免费的Sentosa_DSML社区版。以轻量化一键安装、平台免费使用、视频教学和社区论坛服务为主要特点,能够与其他数据科学家和机器学习爱好者交流心得,分享经验和解决问题。文章最后附上官网链接,感兴趣工具的可以直接下载使用

https://sentosa.znv.com/

标签:函数,pred,print,感知机,MLP,train,Sentosa,test
From: https://blog.csdn.net/qq_45586013/article/details/142390084

相关文章

  • 【第十二章:Sentosa_DSML社区版-机器学习回归】
    【第十二章:Sentosa_DSML社区版-机器学习回归】12.1 线性回归1.算子介绍        线性回归模型(BuildLRNode)是一个非常经典有效的回归模型,它假设所有特征变量和目标变量之间存在线性关系。通过训练来求得各个特征的权重以及截距。同时可以通过L1,L2正则化来减少模型......
  • 使用mlp算法对Digits数据集进行分类
    程序功能这个程序使用多层感知机(MLP)对Digits数据集进行分类。程序将数据集分为训练集和测试集,创建并训练一个具有两个隐藏层的MLP模型。训练完成后,模型对测试数据进行预测,并通过准确率、分类报告和混淆矩阵评估模型的效果。这些评估指标帮助了解模型在手写数字分类任务......
  • 感知机--深度学习
    本章将介绍感知机A(perceptron)这一算法。感知机是由美国学者FrankRosenblatt在1957年提出来的。为何我们现在还要学习这一很久以前就有的算法呢?因为感知机也是作为神经网络(深度学习)的起源的算法。因此,学习感知机的构造也就是学习通向神经网络和深度学习的一种重要思想......
  • 【机器学习(三)】分类和回归任务-随机森林-Sentosa_DSML社区版
    文章目录一、算法概念二、算法原理(一)定义(二)袋外数据三、随机森林的优缺点(一)优点(二)缺点四、随机森林分类任务实现对比(一)数据加载1、Python代码2、Sentosa_DSML社区版(二)样本分区1、Python代码2、Sentosa_DSML社区版(三)模型训练1、Python代码2、Sentosa_DSML社区版(四)模......
  • 感知机模型
    一、概述  感知机模型(PerceptronModel)也叫做神经元模型,设计灵感即来自于生物神经元的运行机制,依次完成信息接收、处理、输出的过程。当前大放异彩的各种人工神经网络模型即由一个个人工神经元构成,因此,本文介绍的感知机模型(神经元模型)就是各种神经网络模型的基本单元。二、......
  • 机器学习项目——基于机器学习(RNN LSTM 高斯拟合 MLP)的锂离子电池剩余寿命预测方法研
    完整的论文代码见文章末尾以下为核心内容和部分结果摘要机器学习方法在电池寿命预测中的应用主要包括监督学习、无监督学习和强化学习等。监督学习方法通过构建回归模型或分类模型,直接预测电池的剩余寿命或健康状态。无监督学习方法则通过聚类分析和降维技术,识别电池数据......
  • 多层感知机的结构和原理
    多层感知机(MultilayerPerceptron,简称MLP)是最经典的前馈神经网络之一,广泛应用于分类、回归等任务。MLP是构建深度学习模型的基本组件,理解其结构和原理对于深入理解神经网络至关重要。1.多层感知机的结构MLP由以下几个部分组成:输入层(InputLayer):用于接收数据的输入,每个节......
  • 【机器学习】感知机
    1.感知机感知机是一个二分类的线性模型,它通过构造一个超平面,将特征空间中的样本分为两类。感知机的核心思想是找到一个超平面,使得不同类别的样本可以通过该超平面分开,适用于线性可分的数据集。优点:实现简单,易于理解和实现。在处理线性可分数据集时具有良好的表现。缺点......
  • 2024年图像处理、机器学习与模式识别国际学术会议(IPMLP 2024)2024 International Conf
    文章目录一、会议详情二、重要信息三、大会介绍四、出席嘉宾五、征稿主题六、咨询一、会议详情二、重要信息大会官网:https://ais.cn/u/vEbMBz提交检索:EICompendex、IEEEXplore、Scopus会议时间:2024.9.13-15日会议地点:中国广州最终截稿时间:2024年9月9日23时59分......
  • AMD在新的MLPerf基准测试中缩小了与Nvidia的差距
    AMD、UntetherAI、Google、Intel和Nvidia的新基准测试结果显示,AI硅片性能竞争日趋激烈。然而,系统设计、网络和软件使AI大放异彩,而这正是Nvidia的强项。终于,我可以停止抱怨AMD缺乏公开的AI基准测试了。AMD发布了其MI300GPU的优秀MLPerf推理结果,虽然只在一个基准测试上与Nvidi......