• 2024-11-21【基于PyTorch的简单多层感知机(MLP)神经网络(深度学习经典代码实现)】
    importtorchfromtorchvisionimporttransformsfromtorchvisionimportdatasetsfromtorch.utils.dataimportDataLoaderimporttorch.nn.functionalasFimporttorch.optimasoptim#准备数据集batch_size=64transform=transforms.Compose([transforms.
  • 2024-11-21神经网络(系统性学习三):多层感知机(MLP)
    相关文章:神经网络中常用的激活函数神经网络(系统性学习一):入门篇神经网络(系统性学习二):单层神经网络(感知机)多层感知机(MLP)多层感知机(MLP)是一种经典的前馈神经网络(FeedforwardNeuralNetwork),通常用于解决分类、回归、监督学习任务。它由一个输入层、一个或多个隐藏层和一个输
  • 2024-11-20神经网络(系统性学习二):单层神经网络(感知机)
    此前篇章:神经网络中常用的激活函数神经网络(系统性学习一):入门篇单层神经网络(又叫感知机)单层网络是最简单的全连接神经网络,它仅有输入层和输出层,没有隐藏层。即,网络的所有输入直接影响到输出。结构:输入层→输出层特点:只适用于线性可分问题。即,单层网络只能学习并解决
  • 2024-11-16【深度学习】二、多层感知机(MLP)
    目录1什么是多层感知机1.1基本概念1.2 数学解释2多层感知机的结构3多层感知机的应用4代码实现4.1代码4.1.1 手动实现4.1.2运行结果4.2简洁实现4.2.1代码4.2.2运行结果4.3面向对象4.3.1代码4.3.2运行结果参考资料本人为小白,欢迎补充!1什么是
  • 2024-11-14【基于PyTorch的简单多层感知机(MLP)神经网络(深度学习经典代码实现)】
    importtorchfromtorchvisionimporttransformsfromtorchvisionimportdatasetsfromtorch.utils.dataimportDataLoaderimporttorch.nn.functionalasFimporttorch.optimasoptim#准备数据集batch_size=64transform=transforms.Compose([transforms.
  • 2024-11-06李沐《动手学深度学习》多层感知机python代码实现
    一、多层感知机手动实现#多层感知机的手动实现%matplotlibinlineimporttorchfromtorchimportnnfromd2limporttorchasd2lbatch_size=256train_iter,test_iter=d2l.load_data_fashion_mnist(batch_size)num_inputs,num_outputs,num_first_hiddens=
  • 2024-10-27人工智能_神经网络103_感知机_感知机工作原理_感知机具备学习能力_在学习过程中自我调整权重_优化效果_多元线性回归_逻辑回归---人工智能工作笔记0228
    由于之前一直对神经网络不是特别清楚,尤其是对神经网络中的一些具体的概念,包括循环,神经网络卷积神经网络以及他们具体的作用,都是应用于什么方向不是特别清楚,所以现在我们来做教程来具体明确一下。当然在机器学习之后还有深度学习,然后在深度学习中对各种神经网络的探讨就会比较
  • 2024-10-18深度学习_多层感知机基于Heart Disease UCI 数据集中的processed.cleveland.data训练集对心脏病进行预测(附数据集下载链接, 长期有效)
    多层感知机(Muti-Layerperceptron)#1.数据导入importpandasaspdnames=["age","sex","cp","trestbps","chol","fbs","restecg",
  • 2024-10-15【机器学习(九)】分类和回归任务-多层感知机 (MLP) -Sentosa_DSML社区版
    @目录一、算法概念二、算法原理(一)感知机(二)多层感知机1、隐藏层2、激活函数sigma函数tanh函数ReLU函数3、反向传播算法三、算法优缺点(一)优点(二)缺点四、MLP分类任务实现对比(一)数据加载和样本分区1、Python代码2、Sentosa_DSML社区版(二)模型训练1、Python代码2、Sentosa_DSML社区版(三)
  • 2024-10-11辛顿与人工智能的第一次寒冬
    辛顿与人工智能的第一次寒冬前言人工智能经历过多次寒冬,因利用神经网络进行机器学习而获2024年诺贝尔物理学奖的杰夫·辛顿就是从人工智能的寒冬中走过来的。辛顿研究神经网络,一开始是为了研究人的大脑,他想要研究大脑的工作方式,更好地了解大脑。在辛顿开始研究时,神经网络
  • 2024-10-10神经网络章节感知机部分 误分类点到线性分割超平面的距离公式 解释说明
    公式8-4的内容如下:S=−1∣
  • 2024-09-28深度学习入门
    目录深度学习定义深度学习的发展背景神经网络基础深度学习与传统机器学习的关系深度学习定义   深度学习是机器学习的一个分支,它模仿人脑处理数据和创建模式的方式,用于解决复杂的模式识别问题。与传统的机器学习方法相比,深度学习能够自动从原始数据中学习到更高层
  • 2024-09-28d2l-ai深度学习日记(三)-多层感知机
     前言:这个博客《d2l-ai深度学习日记》将记录我在深度学习领域的学习与探索,特别是基于《动手学深度学习》这本经典教材的学习过程。在这个过程中,我不仅希望总结所学,还希望通过分享心得,与志同道合的朋友一起交流成长。这不仅是对知识的沉淀,也是我备战研究生考试、追逐学术进阶
  • 2024-09-20《动手学深度学习》笔记1.6——多层感知机→代码实现
    目录1.感知机2.多层感知机2.1XOR(单分类)2.2为何需要(非线性)激活函数?2.3经典激活函数(Sigmoid、Tanh、ReLU)2.4多类分类2.5多隐藏层2.6调参(两种基本思路)2.7总结3.代码实现(pytorch)3.1从零实现可能的报错与解法3.2简洁实现原视频链接:10多层感知机+
  • 2024-09-20【机器学习(九)】分类和回归任务-多层感知机 (MLP) -Sentosa_DSML社区版
    文章目录一、算法概念二、算法原理(一)感知机(二)多层感知机1、隐藏层2、激活函数sigma函数tanh函数ReLU函数3、反向传播算法三、算法优缺点(一)优点(二)缺点四、MLP分类任务实现对比(一)数据加载和样本分区1、Python代码2、Sentosa_DSML社区版(二)模型训练1、Python代码2、Sent
  • 2024-09-11感知机--深度学习
    本章将介绍感知机A(perceptron)这一算法。感知机是由美国学者FrankRosenblatt在1957年提出来的。为何我们现在还要学习这一很久以前就有的算法呢?因为感知机也是作为神经网络(深度学习)的起源的算法。因此,学习感知机的构造也就是学习通向神经网络和深度学习的一种重要思想
  • 2024-09-06感知机模型
    一、概述  感知机模型(PerceptronModel)也叫做神经元模型,设计灵感即来自于生物神经元的运行机制,依次完成信息接收、处理、输出的过程。当前大放异彩的各种人工神经网络模型即由一个个人工神经元构成,因此,本文介绍的感知机模型(神经元模型)就是各种神经网络模型的基本单元。二、
  • 2024-09-03多层感知机的结构和原理
    多层感知机(MultilayerPerceptron,简称MLP)是最经典的前馈神经网络之一,广泛应用于分类、回归等任务。MLP是构建深度学习模型的基本组件,理解其结构和原理对于深入理解神经网络至关重要。1.多层感知机的结构MLP由以下几个部分组成:输入层(InputLayer):用于接收数据的输入,每个节
  • 2024-09-03【机器学习】感知机
    1.感知机感知机是一个二分类的线性模型,它通过构造一个超平面,将特征空间中的样本分为两类。感知机的核心思想是找到一个超平面,使得不同类别的样本可以通过该超平面分开,适用于线性可分的数据集。优点:实现简单,易于理解和实现。在处理线性可分数据集时具有良好的表现。缺点
  • 2024-08-15limu|P10-14|多层感知机、激活函数、模型选择、欠拟合、过拟合、权重衰减、dropout、数值稳定性、模型初始化
    从感知机到多层感知机:感知机:只能产生线性分割面,不能拟合XOR为突破线性模型的限制,可以通过在网络中加入一个/多个隐藏层,即多层感知机MLP。但是如果只是单纯添加隐藏层,还是等价于一个线性模型(仿射变换的仿射变换还是仿射变换),没有带来益处!此时,需要加入额外因素以激发多层架构的潜
  • 2024-08-13人人都能搞定的大模型原理 - 神经网络
    ​人工智能的发展起步于1950年,期间经历了各种里程碑和变革,与此相关的神经网络技术也从最初的单层感知到复杂的层级和卷积神经网络一路创新和变革,不断推动人工智能领域的发展,直到 2022 年 ChatGPT 的问世,彻底引爆了大众的目光。人工智能技术经历了漫长的迭代过程,无论如何变革
  • 2024-08-07感知机代码
    #-*-coding:utf-8-*-"""CreatedonWedAug720:50:032024@author:田雨"""#-*-coding:UTF-8-*-#导入iris数据集fromsklearn.datasetsimportload_iris#导入数据划分包fromsklearn.model_selectionimporttrain_test_split#导入
  • 2024-07-22保姆教程深度学习(多层感知机)一份足矣
    多层感知机一.隐藏层和激活函数1.为什么需要隐藏层?前面几篇博客我们通过基础知识,学习了如何处理数据,如何将输出转换为有效的概率分布,并应用适当的损失函数,根据模型参数最小化损失。但是记不记得当时我们算出来的数据都是线性的,我们把一张图片28*28=784的每一个像素视为一
  • 2024-06-22机器学习1——感知机
    1.感知机干什么?求出二元分类的分离超平面,将实例划分为正负两类,属于判别模型。ps:是神经网络和支持向量机的基础。2.感知机是什么?其中x是n维特征向量,对应于输入控件的点,输出y表示实例的类别,为+1或-1。(ps:sign是符号函数)几何解释:w·x+b=0 ——对应于特征空间的一个超