这是一个使用 PyTorch 实现的中文聊天机器人对话生成模型。
1数据准备
代码假设有两个文件:questions.txt 和 answers.txt,它们分别包含输入和输出序列。
load_data 函数读取这些文件并返回一个句子列表。
build_vocab 函数通过遍历句子来构建词汇表字典 word2index 和 index2word。
2模型定义
Encoder 和 Decoder 类定义了 seq2seq 模型的架构。
Encoder 接收输入序列并输出隐藏状态和细胞状态。
Decoder 接收编码器的隐藏状态和细胞状态,并生成输出序列。
Seq2Seq 类将编码器和解码器组合,并添加一个分类头来完成辅助任务。
3训练
train 函数使用 Adam 优化器和交叉熵损失来训练模型。
模型在指定的 epoch 数中进行训练,并在每个 epoch 中计算和打印损失。
模型在训练完成后被保存到文件 model.pth 中。
4预测
predict 函数接收输入句子并使用训练好的模型生成输出序列。
5数据增强
data_augmentation 函数对输入句子应用各种数据增强技术,包括:
- 随机插入 token
- 随机删除 token
- 随机交换 token
* 6回译
*7 随机替换 token 为同义词
注意,代码的一些部分是不完整或注释掉的,因此您可能需要修改或完成它们以适应您的具体使用场景。
下面是代码:
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
import random
import tkinter as tk
import jieba
import matplotlib.pyplot as plt
import os
from googletrans import Translator # 用于回译
# 中文词汇表和索引映射
word2index = {
"<PAD>": 0, "<SOS>": 1, "<EOS>": 2, "<UNK>": 3}
index2word = {
0: "<PAD>", 1: "<SOS>", 2: "<EOS>", 3: "<UNK>"}
# 使用 jieba 进行中文分词
def tokenize_chinese(sentence):
tokens = jieba.lcut(sentence)
return tokens
# 构建词汇表
def build_vocab(sentences):
global word2index, index2word
vocab_size = len(word2index)
for sentence in sentences:
for token in tokenize_chinese(sentence):
if token not in word2index:
word2index[token] = vocab_size
index2word[vocab_size] = token
vocab_size += 1
return vocab_size
# 将句子转换为张量
def sentence_to_tensor(sentence, max_length=50):
tokens = tokenize_chinese(sentence)
indices = [word2index.get(token, word2index["<UNK>"]) for token in tokens]
indices += [word2index["<PAD>"]] * (max_length - len(indices))
return torch.tensor(indices, dtype=torch.long), len(indices)
# 读取问题和答案文件
def load_data(file_path):
with open(file_path, 'r', encoding='utf-8') as f:
lines = f.read().splitlines()
return lines
# 假设数据文件是 'questions.txt' 和 'answers.txt'
question_file = 'questions.txt'
answer_file = 'answers.txt'
questions = load_data(question_file)
answers = load_data(answer_file)
# 获取词汇表大小
vocab_size = build_vocab(questions + answers)
# 定义数据集
class ChatDataset(Dataset):
def __init__(self, questions, answers, labels):
self.questions = questions
self.answers = answers
self.labels = labels
def __len__(self):
return len(self.questions)
def __getitem__(self, idx):
input_tensor, input_length = sentence_to_tensor(self.questions[idx])
target_tensor, target_length = sentence_to_tensor(self.answers[idx])
label = self.labels[idx]
return input_tensor, target_tensor, input_length, target_length, label
# 自定义 collate 函数
def collate_fn(batch):
inputs, targets, input_lengths, target_lengths, labels = zip(*batch)
inputs = nn.utils.rnn.pad_sequence(inputs, batch_first=True, padding_value=word2index["<PAD>"])
targets = nn.utils.rnn.pad_sequence(targets, batch_first=True, padding_value=word2index["<PAD>"])
labels = torch.tensor(labels)
return inputs, targets, torch.tensor(input_lengths), torch.tensor(target_lengths), labels
# 创建数据集和数据加载器
labels = [0]
标签:word2index,tensor,self,机器人,token,PyTorch,questions,import,916
From: https://blog.csdn.net/weixin_54366286/article/details/142307541