首页 > 其他分享 >Fisher Information Matrix when Changing Variables

Fisher Information Matrix when Changing Variables

时间:2022-08-21 13:46:30浏览次数:85  
标签:Information right frac Matrix Variables end mu theta matrix

Copied from this link

For normal \(X\sim N(\mu,\sigma^2)\), information matrix is

\[\mathcal{I}_1 = \left( \begin{matrix} \frac{1}{\sigma^2} & 0 \\ 0 & \frac{1}{2\sigma^4} \end{matrix} \right) \]

For curved normal \(X\sim N(\mu,\mu^2)\)

\[\mathcal{I}_2=\frac{3}{\mu^2}.$$So, your observation that determinants being equal is not universal, but that is not the whole story. Generally, if $\mathcal{I}_g$ is the information matrix under the reparametrization $$g(\theta)=(g_1(\theta),...,g_k(\theta))',$$ then, it is not difficult to see that the information matrix for the original parameters is $$I(\theta)=G'I_g(g(\theta))G$$ where $G$ is the Jacobian of the transformation $g=g(\theta)$. For Bernoulli example $(\theta_0,\theta_1)=(p,1-p)$ and $g(p)=(p,1-p)$. So, the Jacobian is $(1,-1)'$ and thus $$\mathcal{I}(p) = \left( \begin{matrix} 1& -1 \end{matrix} \right)\left( \begin{matrix} \frac{1}{p} & 0 \\ 0 & \frac{1}{1-p} \end{matrix} \right) \left( \begin{matrix} 1 \\ -1 \end{matrix} \right)=\frac{1}{p(1-p)}\]

For curved normal example,

\[\mathcal{I}_2 = \left( \begin{matrix} 1& 2\mu \end{matrix} \right)\left( \begin{matrix} \frac{1}{\mu^2} & 0 \\ 0 & \frac{1}{2\mu^4} \end{matrix} \right) \left( \begin{matrix} 1 \\ 2\mu \end{matrix} \right)=\frac{3}{\mu^2}. \]

I think now you can easily relate the determinants.

Follow-up after the comment

If I understood you correctly, the FIM is valid as long as you extend the parameters in meaningful way: the likelihood under new parametrization should be a valid density. Hence, I called the Bernoulli example a unfortunate one.

I think the link you provided has a serious flaw in the derivation of the FIM for categorical variables, as we have \(E(x_i^2)=\theta_i(1-\theta_i)\neq \theta_i\) and \(E(x_ix_j)=\theta_i\theta_j\neq 0\). Expectection of the negative Hessian gives \(\mathrm{diag}\{1/\theta_i\}\), but not for the covariance of the score vectors. If you neglect the constraints, the information matrix equality doesn't hold.

标签:Information,right,frac,Matrix,Variables,end,mu,theta,matrix
From: https://www.cnblogs.com/nana22/p/16609879.html

相关文章

  • IfcDocumentInformationRelationship
    IfcDocumentInformationRelationship实体定义IfcDocumentInformationRelationship是一种关系实体,它使文档能够引用其他文档。它用于描述一个文档可以引用一个或多个其他......
  • IfcDocumentInformation
    IfcDocumentInformation 实体定义IfcDocumentInformation捕获外部文档的“元数据”。本规范未定义文件的实际内容;相反,它可以在Location属性之后找到。 可以使用IfcD......
  • Fisher Information and Bures distance
    \[F=Tr\sqrt{\sqrt{\rho_{\theta}}\left(\rho_{\theta}+\partial\rho_{\theta}d\theta+\partial^2\rho_{\theta}\frac{d\theta^2}{2}\right)\sqrt{\rho_{\thet......
  • [LeetCode] 1314. Matrix Block Sum 矩阵区域和
    Givena mxn matrix mat andaninteger k,return amatrix answer whereeach answer[i][j] isthesumofallelements mat[r][c] for:i-k<=r<=......
  • ABC 264 C - Matrix Reducing(思维)
    https://atcoder.jp/contests/abc264/tasks/abc264_c题目大意:给定n*m的a矩阵,x*y的b矩阵问能不能删除若干行和列使a变成b?SampleInput14512345678910......