目录
任务
完成 Kulla-Conty BRDF 模型,关键在于计算 BRDF 的补偿项 f ms ,而 f ms 的计算需要 E ( µ ) 和 E avg 两个前置变量。1.预计算E(µ)
2.预计算Eavg
3.在实时渲染中使用预计算的数据。
Bonus1:使用重要性采样方法
实现
该作业框架采用的F,D,G三种模型
F项采用Schlick近似
D项采用GGX法线分布
G项采用GGX法线分布匹配的Smith模型
预计算E(µ)
这里使用框架里提到的Revisiting Physically Based Shading at Image works SIGGRAPH 2017 course,by Kulla and Conty
当我们使用Mircofacet模型时,当材质的粗糙度越大,通过白炉测试会发现损失的能量越来越多。因为Mircofacet模型只涉及一次的光线弹射,当物体很粗糙时,一根光线很容易会与表面发生多次作用,Mircofacet忽略了这一点,因此粗糙度大的物体,渲染结果会有点暗。而Kulla Conty的模型解决了这一问题。
将入射光看作四面八方radiance都为1的光,对所有方向的入射光求积分求它的irradiance,可以得到下面的式子,
这种形式是将dw拆分成了两项,并将原来的式子中的cosθ移到了dθ里,因此变成sinθd(sinθ),将sinθ换元成μ,就得到了最终上面的式子。好处就是不需要再关注 Φ了,就留下一个μ。
假设入射光为1,那么损失的能量是1-E(μ),因为BRDF的对称性,因此需要考虑入射与出射方向。但是1-E(μ)是<0的,多乘一次,会变得更小,使得损失的能量计算错误,因此需要在补一项,最终得到下面的式子。
通过下面的验证,证明了该公式的合理。
因此对于任意一个Mircofacet的补偿能量,我们需要知道1-E(μ)和1-Eavg,就能求出需要补偿的能量。E(μ)依赖三个参数,入射角μ,粗糙度α,和折射率。但是三个变量会产生很大的存储空间,因此简单将菲涅尔项先当作1处理,因此通过μ和α可以求出最终的预计算的表。
但是对于有色的物体,其自身也会对光进行吸收,也会存在能量损失。
因此对于有色物体,在补偿的能量上还需要乘以颜色带来的能量损失。因此最终的BRDF是
//Emu_MC.cpp
float DistributionGGX(Vec3f N, Vec3f H, float roughness)
{
float a = roughness*roughness;
float a2 = a*a;
float NdotH = std::max(dot(N, H), 0.0f);
float NdotH2 = NdotH*NdotH;
float nom = a2;
float denom = (NdotH2 * (a2 - 1.0) + 1.0);
denom = PI * denom * denom;
return nom / std::max(denom, 0.0001f);
}
float GeometrySchlickGGX(float NdotV, float roughness) {
float a = roughness;
float k = (a * a) / 2.0f;
float nom = NdotV;
float denom = NdotV * (1.0f - k) + k;
return nom / denom;
}
float GeometrySmith(float roughness, float NoV, float NoL) {
float ggx2 = GeometrySchlickGGX(NoV, roughness);
float ggx1 = GeometrySchlickGGX(NoL, roughness);
return ggx1 * ggx2;
}
Vec3f IntegrateBRDF(Vec3f V, float roughness, float NdotV) {
float A = 0.0;
float B = 0.0;
float C = 0.0;
const int sample_count = 1024;
Vec3f N = Vec3f(0.0, 0.0, 1.0);
samplePoints sampleList = squareToCosineHemisphere(sample_count);
for (int i = 0; i < sample_count; i++) {
// TODO: To calculate (fr * ni) / p_o here
Vec3f L = normalize(sampleList.directions[i]);
float pdf = sampleList.PDFs[i];
Vec3f H = normalize(L + V);
float NdotL = dot(N,L);
float F = 1.0;
float G = GeometrySmith(roughness,NdotV,NdotL);
float D = DistributionGGX(N,H,roughness);
float denominator = 4 * NdotL * NdotV;
float result = F * G * D / denominator * NdotL / pdf;
A += result;
B += result;
C += result;
}
return {A / sample_count, B / sample_count, C / sample_count};
}
预计算Eavg
其实按照题目给的要求,完全不需要采样,直接在main里面求和然后再求平均就好了。
int main() {
unsigned char *Edata = stbi_load("./GGX_E_MC_LUT.png", &resolution, &resolution, &channel, 3);
if (Edata == NULL)
{
std::cout << "ERROE_FILE_NOT_LOAD" << std::endl;
return -1;
}
else
{
std::cout << resolution << " " << resolution << " " << channel << std::endl;
// | -----> mu(j)
// |
// | rough(i)
// flip it if you want to write the data on picture
uint8_t data[resolution * resolution * 3];
float step = 1.0 / resolution;
Vec3f Eavg = Vec3f(0.0);
for (int i = 0; i < resolution; i++)
{
float roughness = step * (static_cast<float>(i) + 0.5f);
for (int j = 0; j < resolution; j++)
{
float NdotV = step * (static_cast<float>(j) + 0.5f);
Vec3f V = Vec3f(std::sqrt(1.f - NdotV * NdotV), 0.f, NdotV);
Vec3f Ei = getEmu((resolution - 1 - i), j, 0, Edata, NdotV, roughness);
// Eavg += IntegrateEmu(V, roughness, NdotV, Ei) * step;
Eavg += Ei * NdotV * 2.0 * step;
setRGB(i, j, 0.0, data);
}
for(int k = 0; k < resolution; k++)
{
setRGB(i, k, Eavg, data);
}
Eavg = Vec3f(0.0);
}
// stbi_flip_vertically_on_write(true);
stbi_write_png("GGX_Eavg_LUT.png", resolution, resolution, channel, data, 0);
}
stbi_image_free(Edata);
return 0;
}
Bonus1:重要性采样
这里直接就采用作业文档里给出的公式了。
通过采样法线,通过反射来计算入射光的方向。
法线的采样
pdf的计算
最终的权重
//Emu_IS.cpp
Vec3f ImportanceSampleGGX(Vec2f Xi, Vec3f N, float roughness) {
float a = roughness * roughness;
//TODO: in spherical space - Bonus 1
float theta = atan(a * sqrt(Xi.x) / sqrt(1.0 - Xi.x));
float phi = 2.0 * PI * Xi.y;
//TODO: from spherical space to cartesian space - Bonus 1
Vec3f H = Vec3f(cos(phi) * sin(theta) , sin(phi) * sin(theta) , cos(theta) );
//TODO: tangent coordinates - Bonus 1
Vec3f temp = Vec3f(0.0,0.0,1.0);
if( abs(N.z ) > 0.999)temp = Vec3f(1.0,0.0,0.0);
Vec3f tangent = normalize( cross(temp,N) );
Vec3f bitangent = normalize( cross(N,tangent));
//TODO: transform H to tangent space - Bonus 1
Vec3f sample = tangent * H.x + bitangent * H.y + N * H.z ;
return normalize(sample);
}
//Emu_IS.cpp
Vec3f IntegrateBRDF(Vec3f V, float roughness) {
const int sample_count = 1024;
Vec3f N = Vec3f(0.0, 0.0, 1.0);
Vec3f Emu = Vec3f(0.0);
for (int i = 0; i < sample_count; i++) {
Vec2f Xi = Hammersley(i, sample_count);
Vec3f H = ImportanceSampleGGX(Xi, N, roughness);
Vec3f L = normalize(H * 2.0f * dot(V, H) - V);
float NoL = std::max(L.z, 0.0f);
float NoH = std::max(H.z, 0.0f);
float VoH = std::max(dot(V, H), 0.0f);
float NoV = std::max(dot(N, V), 0.0f);
// TODO: To calculate (fr * ni) / p_o here - Bonus 1
float G = GeometrySmith(roughness , NoV , NoL);
float weight = VoH * G / NoV / NoH;
Emu += Vec3f(1.0) * weight;
// Split Sum - Bonus 2
}
std::cout << Emu.x << Emu.y << Emu.z << std::endl;
return Emu / sample_count;
}
在实时渲染中使用预计算数据
//KullaContyFragment.glsl
#ifdef GL_ES
precision mediump float;
#endif
uniform vec3 uLightPos;
uniform vec3 uCameraPos;
uniform vec3 uLightRadiance;
uniform vec3 uLightDir;
uniform sampler2D uAlbedoMap;
uniform float uMetallic;
uniform float uRoughness;
uniform sampler2D uBRDFLut;
uniform sampler2D uEavgLut;
uniform samplerCube uCubeTexture;
varying highp vec2 vTextureCoord;
varying highp vec3 vFragPos;
varying highp vec3 vNormal;
const float PI = 3.14159265359;
float DistributionGGX(vec3 N, vec3 H, float roughness)
{
// TODO: To calculate GGX NDF here
float a2 = roughness * roughness;
float NdotH = max(dot(N, H), 0.0);
float NdotH2 = NdotH*NdotH;
float nom = a2;
float denom = (NdotH2 * (a2 - 1.0) + 1.0);
denom = PI * denom * denom;
return nom / denom;
}
float GeometrySchlickGGX(float NdotV, float roughness)
{
// TODO: To calculate Schlick G1 here
float a = roughness;
float k = (a * a) / 2.0;
float nom = NdotV;
float denom = NdotV * (1.0 - k) + k;
return nom / denom;
}
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)
{
// TODO: To calculate Smith G here
float NdotV = max(dot(N, V), 0.0);
float NdotL = max(dot(N, L), 0.0);
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
float ggx1 = GeometrySchlickGGX(NdotL, roughness);
return ggx1 * ggx2;
}
vec3 fresnelSchlick(vec3 F0, vec3 V, vec3 H)
{
// TODO: To calculate Schlick F here
return F0 + (1.0 - F0) * pow(1.0 - dot(V, H), 5.0);
}
//https://blog.selfshadow.com/publications/s2017-shading-course/imageworks/s2017_pbs_imageworks_slides_v2.pdf
vec3 AverageFresnel(vec3 r, vec3 g)
{
return vec3(0.087237) + 0.0230685*g - 0.0864902*g*g + 0.0774594*g*g*g
+ 0.782654*r - 0.136432*r*r + 0.278708*r*r*r
+ 0.19744*g*r + 0.0360605*g*g*r - 0.2586*g*r*r;
}
vec3 MultiScatterBRDF(float NdotL, float NdotV)
{
vec3 albedo = pow(texture2D(uAlbedoMap, vTextureCoord).rgb, vec3(2.2));
vec3 E_o = texture2D(uBRDFLut, vec2(NdotL, uRoughness)).xyz;
vec3 E_i = texture2D(uBRDFLut, vec2(NdotV, uRoughness)).xyz;
vec3 E_avg = texture2D(uEavgLut, vec2(0, uRoughness)).xyz;
// copper
vec3 edgetint = vec3(0.827, 0.792, 0.678);
vec3 F_avg = AverageFresnel(albedo, edgetint);
// TODO: To calculate fms and missing energy here
vec3 fms = ( vec3(1.0) - E_o ) * (vec3(1.0) - E_i) / ( PI * (vec3(1.0) - E_avg) );
vec3 fadd = F_avg * E_avg / ( vec3(1.0) - F_avg * ( vec3(1.0) - E_avg ) );
return fms * fadd;
return vec3(1.0);
}
void main(void) {
vec3 albedo = pow(texture2D(uAlbedoMap, vTextureCoord).rgb, vec3(2.2));
vec3 N = normalize(vNormal);
vec3 V = normalize(uCameraPos - vFragPos);
float NdotV = max(dot(N, V), 0.0);
vec3 F0 = vec3(0.04);
F0 = mix(F0, albedo, uMetallic);
vec3 Lo = vec3(0.0);
// calculate per-light radiance
vec3 L = normalize(uLightDir);
vec3 H = normalize(V + L);
float distance = length(uLightPos - vFragPos);
float attenuation = 1.0 / (distance * distance);
vec3 radiance = uLightRadiance;
float NDF = DistributionGGX(N, H, uRoughness);
float G = GeometrySmith(N, V, L, uRoughness);
vec3 F = fresnelSchlick(F0, V, H);
vec3 numerator = NDF * G * F;
float denominator = 4.0 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0);
vec3 Fmicro = numerator / max(denominator, 0.001);
float NdotL = max(dot(N, L), 0.0);
vec3 Fms = MultiScatterBRDF(NdotL, NdotV);
vec3 BRDF = Fmicro + Fms;
Lo += BRDF * radiance * NdotL;
vec3 color = Lo;
color = color / (color + vec3(1.0));
color = pow(color, vec3(1.0/2.2));
gl_FragColor = vec4(color, 1.0);
}
结果
没有采用重要性采样得到的E(μ)的结果
采用重要性采样后得到的E(μ)的结果
Eavg的结果
在渲染端使用预计算后补偿能量的结果
标签:Vec3f,GAMES202,1.0,0.0,BRDF,float,roughness,Kulla,vec3 From: https://blog.csdn.net/weixin_50780569/article/details/141858667