首页 > 其他分享 >基于OFDM的通感一体化信号的定位CRLB推导

基于OFDM的通感一体化信号的定位CRLB推导

时间:2024-08-22 15:55:43浏览次数:16  
标签:采样 OFDM 载波 CRLB 通感 信号 无人机

本文的CRLB推导结果来源于文章Cooperative Trajectory Planning and Resource Allocation for UAV-Enabled Integrated Sensing and Communication Systems,引用格式:

{Yu Pan, Ruoguang Li*, Xinyu Da, Hang Hu, Miao Zhang, Dong Zhai, Kanapathippillai Cuman, and Octavia A. Dobre, "Cooperative Trajectory Planning and Resource Allocation for UAV-Enabled Integrated Sensing and Communication Systems." IEEE Transactions on Vehicular Technology, vol.73, no. 5, pp. 6502-6516, May 2024. doi: 10.1109/TVT.2023.3337106. }

首先简单介绍一下单个OFDM符号传输的原理:

假设原连续信号为N个载波下信号的叠加,每个载波传输的码元为X_k,则该信号为:

{s_l}(t) = \sum\limits_{k = 0}^{N - 1} {​{X_k}{e^{\frac{​{j2\pi kt}}{T}}}}

在每个时刻{t_n} = \frac{​{nT}}{N}抽样,则此时得到N个离散的时间信号:

{s_n} = {s_l}(\frac{​{nT}}{N}) = \sum\limits_{k = 0}^{N - 1} {​{X_k}{e^{\frac{​{j2\pi kn}}{N}}}}

这意味着我们可以直接通过生成s_n得到原连续信号的采样信号,这必然可以在一定条件下恢复出原信号。在解调端,为恢复传输码元,有

{X_k} = \frac{1}{N}\sum\limits_{n = 0}^{N - 1} {​{s_n}{e^{ - \frac{​{j2\pi kn}}{N}}}}

--------------------------------------------------------------------------------------------------------------------------------

接下来考虑如下场景,K架无人机利用OFDM信号基于时延对目标进行测距,并通过多点法利用多架无人机的测距结果定位目标,第k架无人机的发射信号为

S_k^i(t) = {e^{​{\rm{j}}2\pi {f_{c,k}}t}}\sum\limits_{n = 0}^{​{N_k} - 1} {\sum\limits_{m = 0}^{M - 1} {a_{kn}^i} } C_{k,nm}^i{e^{​{\rm{j}}2\pi n\Delta f(t - mT)}}{\mathop{\rm rect}\nolimits} \left[ {\frac{​{(t - mT)}}{T}} \right]              (1)

该式表示第k架无人机的发射的时域信号,在其每个符号间隔T内采样N_k次(与载波数相等),则第m个符号间隔内的第l个采样信号为:(忽略载波)

(OFDM调制中1个连续时间码元由N_k个载波携带的码元生成,生成N_k个采样点)

\tilde S_k^i(l) = S_k^i(mT + \frac{​{lT}}{​{​{N_k}}}) = \sum\limits_{n = 0}^{​{N_k} - 1} {a_{kn}^iC_{k,nm}^i{e^{\frac{​{​{\rm{j}}2\pi nl}}{​{​{N_k}}}}}}                           (2)

其中l=1,…,N_k。也就是说如果需要传输M*N_k(这里的N_k表示载波数,M表示传输的符号数),就需要在串并转换后对每一列的N_k个符号进行FFT变换,得到N_k个离散时间采样值,同样的操作需进行M次。

由发射信号我们可以得到第k架无人机的回波信号为:

r_k^i(t) = \sum\limits_{n = 0}^{​{N_{\rm{c}}} - 1} {\sum\limits_{m = 0}^{M - 1} {\zeta _k^i} } a_{kn}^iC_{k,nm}^i{e^{​{\rm{j}}2\pi n\Delta f\left( {t - mT - \tau _k^i} \right)}}{e^{​{\rm{j}}2\pi {f_{​{\rm{c,k}}}}\left( {t - \tau _k^i} \right)}}{e^{​{\rm{j}}2\pi f_{D,k}^it}} + {\mathop{\rm rect}\nolimits} \left[ {\frac{​{t - mT - \tau _k^i}}{T}} \right] + {\phi _k}(t)  (3)

其中\tau _k^i = 2d_k^i/{c_0},{\rm{ }}f_{D,k}^i = 2v_k^i{f_c}/{c_0}                                            (4)

对该接收信号进行下变频

y_k^i(t) = {e^{​{\rm{ - j}}2\pi {f_{​{\rm{c,k}}}}\tau _k^i}}\sum\limits_{n = 0}^{​{N_{\rm{c}}} - 1} {\sum\limits_{m = 0}^{M - 1} {\zeta _k^i} } a_{kn}^iC_{k,nm}^i{e^{​{\rm{j}}2\pi n\Delta f\left( {t - mT - \tau _k^i} \right)}}{e^{​{\rm{j}}2\pi f_{D,k}^it}}{\mathop{\rm rect}\nolimits} \left[ {\frac{​{t - mT - \tau _k^i}}{T}} \right] + n(t)(5)

对其取样,则第m个符号间隔内的采样信号为(其中{T_s} = \frac{T}{​{​{N_k}}}):

\begin{array}{l} \tilde y_k^i(l,m) = \tilde y_k^i(mT + {\frac{​{lT}}{​{​{N_k}}}}) = {e^{​{\rm{ - j}}2\pi {f_{​{\rm{c,k}}}}\tau _k^i}}\sum\limits_{n = 0}^{​{N_{\rm{c}}} - 1} {\zeta _k^ia_{kn}^iC_{k,nm}^i{e^{​{\rm{j}}2\pi n\Delta f\left( {\frac{​{lT}}{​{​{N_k}}} - \tau _k^i} \right)}}{e^{​{\rm{j}}2\pi f_{D,k}^i\left( {mT + \frac{​{lT}}{​{​{N_k}}}} \right)}} + n(t)} \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \sum\limits_{n = 0}^{​{N_{\rm{c}}} - 1} {\zeta _k^ia_{kn}^iC_{k,nm}^i{e^{​{\rm{ - j}}2\pi {f_{​{\rm{c,k}}}}\tau _k^i}}{e^{​{\rm{ - j}}2\pi n\Delta f\tau _k^i}}{e^{​{\rm{j}}2\pi f_{D,k}^i\left( {mT + \frac{​{lT}}{​{​{N_k}}}} \right)}}{e^{\frac{​{​{\rm{j}}2\pi nl}}{​{​{N_k}}}}} + n(t)} \end{array}

(6)

然后对采样得到的N_k个时间序列进行FFT(OFDM解调),即

\begin{array}{l} {\bf{Y}}_k^i(n,m) = \frac{1}{​{​{N_k}}}\sum\limits_{l = 0}^{​{N_k} - 1} {\tilde y_k^i(l,m){e^{ - \frac{​{​{\rm{j}}2\pi nl}}{​{​{N_k}}}}}} \\ = \sum\limits_{l = 0}^{​{N_k} - 1} {\sum\limits_{n = 0}^{​{N_{\rm{c}}} - 1} {\zeta _k^ia_{kn}^iC_{k,nm}^i{e^{​{\rm{ - j}}2\pi {f_{​{\rm{c,k}}}}\tau _k^i}}{e^{​{\rm{ - j}}2\pi n\Delta f\tau _k^i}}{e^{​{\rm{j}}2\pi f_{D,k}^i\left( {mT + \frac{​{lT}}{​{​{N_k}}}} \right)}}{e^{\frac{​{​{\rm{j}}2\pi nl}}{​{​{N_k}}}}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} } {e^{ - \frac{​{​{\rm{j}}2\pi nl}}{​{​{N_k}}}}}} \\ = \zeta _k^ia_{kn}^iC_{k,nm}^i{e^{​{\rm{ - j}}2\pi {f_{c,kn}}\tau _k^i}}{e^{​{\rm{ - j}}2\pi n\Delta f\tau _k^i}}{e^{​{\rm{j}}2\pi f_{D,k}^imT}} + {\bf{N}}(n,m) \end{array}    (7)

(忽略了$\frac{​{lT}}{​{​{N_k}}}$的频偏)

由于每个无人机对自己的发射矩阵C_{k,nm}^i已知,所以可以写成

{\bf{Y}}_k^i(n,m) = a_{kn}^i\zeta _k^i{e^{​{\rm{ - j}}2\pi {f_{​{\rm{c,kn}}}}\tau _k^i}}{e^{​{\rm{j}}2\pi f_{D,k}^imT}} + {\bf{N}}(n,m),                     (8)

由此写出似然函数

{\rm{ - In}}f({​{\bf{Y}}^i}\left| {​{\theta ^i}} \right.) = - \sum\limits_{k \in {\cal K}} {\sum\limits_{n \in {\cal N}_k^i} {\sum\limits_{m = 0}^{M - 1} {​{\rm{In}}\frac{1}{​{\sqrt {2\pi \sigma _{r,k}^2} }}} } } - \frac{1}{​{2\sigma _{r,k}^2}}{\left| {​{\bf{Y}}_k^i(n,m) - a_{kn}^i\zeta _k^i{e^{​{\rm{ - j}}2\pi {f_{​{\rm{c,kn}}}}\tau _k^i}}{e^{​{\rm{j}}2\pi f_{D,k}^imT}}} \right|^2}

                     = - \sum\limits_{k \in {\cal K}} {\sum\limits_{n \in {\cal N}_k^i} {\sum\limits_{m = 0}^{M - 1} {​{\rm{In}}\frac{1}{​{\sqrt {2\pi \sigma _{r,k}^2} }}} } } - \frac{​{​{​{\left| {​{\bf{Y}}_k^i(n,m)} \right|}^2} + {​{\left| {a_{kn}^i\zeta _k^i{e^{​{\rm{ - j}}2\pi {f_{​{\rm{c,kn}}}}\tau _k^i}}{e^{​{\rm{j}}2\pi f_{D,k}^imT}}} \right|}^2}}}{​{2\sigma _{r,k}^2}}+ \frac{​{​{\mathop{\rm Re}\nolimits} \left[ {​{\bf{Y}}_k^i{​{(n,m)}^*}a_{kn}^i\zeta _k^i{e^{​{\rm{ - j}}2\pi {f_{​{\rm{c,kn}}}}\tau _k^i}}{e^{​{\rm{j}}2\pi f_{D,k}^imT}}} \right]}}{​{\sigma _{r,k}^2}}

            {\kern 1pt} = - \sum\limits_{k \in {\cal K}} {\sum\limits_{n \in {\cal N}_k^i} {\sum\limits_{m = 0}^{M - 1} {​{\rm{constant}}} } } + \frac{​{​{\mathop{\rm Re}\nolimits} \left[ {​{\bf{Y}}_k^i{​{(n,m)}^*}a_{kn}^i\zeta _k^i{e^{​{\rm{ - j}}2\pi {f_{​{\rm{c,kn}}}}\tau _k^i}}{e^{​{\rm{j}}2\pi f_{D,k}^imT}}} \right]}}{​{\sigma _{r,k}^2}}   (9)

常数项求导时可约去,即令

\begin{array}{l} {\rm{ - In}}f({​{\bf{Y}}^i}\left| {​{\theta ^i}} \right.) = - \sum\limits_{k \in {\cal K}} {\sum\limits_{n \in {\cal N}_k^i} {\sum\limits_{m = 0}^{M - 1} {\frac{​{​{\mathop{\rm Re}\nolimits} \left[ {​{\bf{Y}}_k^i{​{(n,m)}^*}a_{kn}^i\zeta _k^i{e^{​{\rm{ - j}}2\pi {f_{​{\rm{c,kn}}}}\tau _k^i}}{e^{​{\rm{j}}2\pi f_{D,k}^imT}}} \right]}}{​{\sigma _{r,k}^2}}} } } \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = - \sum\limits_{k \in {\cal K}} {\sum\limits_{n \in {\cal N}_k^i} {\sum\limits_{m = 0}^{M - 1} {\frac{​{​{​{\left| {a_{kn}^i\zeta _k^i} \right|}^2}\cos \left[ {​{\rm{ - }}2\pi {f_{​{\rm{c,kn}}}}\left( {\tau _k^i - \tilde \tau _k^i} \right) + 2\pi mT\left( {f_{D,k}^i - \tilde f_{D,k}^i} \right)} \right]}}{​{\sigma _{r,k}^2}}} } } \end{array}    (10)

{​{\bf{J}}_z} = \left[ \begin{array}{l} {J_{​{\tau _1}{\tau _1}}}{\rm{ }}{\kern 12pt}{J_{​{\tau _1}{\tau _2}}}{\rm{ }} {\kern 12pt} \ldots {\rm{ }}{\kern 9pt}{J_{​{\tau _1}{f_{D,K}}}}\\ {J_{​{\tau _2}{\tau _1}}}{\rm{ }}{\kern 12pt}{J_{​{\tau _2}{\tau _2}}}{\rm{ }} {\kern 12pt}\ldots {\rm{ }}{\kern 9pt}{J_{​{\tau _2}{f_{D,K}}}}\\ {\rm{ }} {\kern 12pt}\vdots {\rm{ }} {\kern 30pt}\vdots {\rm{ }} {\kern 25pt}\ddots {\rm{ }} {\kern 15pt}\vdots \\ {J_{​{f_{D,K}}{\tau _1}}}{\rm{ }}{J_{​{f_{D,K}}{\tau _2}}}{\rm{ }} \cdots {\rm{ }}{J_{​{f_{D,K}}{f_{D,K}}}} \end{array} \right]                                   (11)

- E\left[ {\frac{​{​{\partial ^2}{\rm{In}}f({​{\bf{Y}}^i}\left| {​{\theta ^i}} \right.)}}{​{\partial \tau _k^{​{i^2}}}}} \right] = {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} E\left\{ {\sum\limits_{n \in {\cal N}_k^i} {\sum\limits_{m = 0}^{M - 1} {\frac{​{​{​{\left| {a_{kn}^i\zeta _k^i2\pi {f_{​{\rm{c,kn}}}}} \right|}^2}\cos \left[ {​{\rm{ - }}2\pi {f_{​{\rm{c,kn}}}}\left( {\tau _k^i - \tilde \tau _k^i} \right) + 2\pi mT\left( {f_{D,k}^i - \tilde f_{D,k}^i} \right)} \right]}}{​{\sigma _{r,k}^2}}} } } \right\}

                       = E\left\{ {\sum\limits_{n \in {\cal N}_k^i} {\sum\limits_{m = 0}^{M - 1} {\frac{​{​{​{\left| {a_k^i\zeta _k^i2\pi {f_{​{\rm{c,kn}}}}} \right|}^2}{\mathop{\rm Re}\nolimits} \left( {​{e^{​{\rm{j}}2\pi {f_{​{\rm{c,kn}}}}\tilde \tau _k^i}}{e^{​{\rm{ - j}}2\pi \tilde f_{D,k}^imT}}*{e^{​{\rm{ - j}}2\pi {f_{​{\rm{c,kn}}}}\tau _k^i}}{e^{​{\rm{j}}2\pi f_{D,k}^imT}}} \right)}}{​{\sigma _{r,k}^2}}} } } \right\}

{\kern 1pt} = \sum\limits_{n \in {\cal N}_k^i} {\sum\limits_{m = 0}^{M - 1} {\frac{​{​{​{\left| {a_{kn}^i\zeta _k^i2\pi {f_{​{\rm{c,kn}}}}} \right|}^2}}}{​{\sigma _{r,k}^2}}} } = \frac{​{Mc_0^2{\sigma _{​{\rm{RCS}}}}}}{​{16\pi \sigma _{r,k}^2}}\frac{​{P_k^i}}{​{d{​{_k^i}^4}}}                                                  (12)

同理可得

- E\left[ {\frac{​{​{\partial ^2}{\rm{In}}f({​{\bf{Y}}^i}\left| {​{\theta ^i}} \right.)}}{​{\partial f_{D,k}^{​{i^2}}}}} \right] = \sum\limits_{n \in {\cal N}_k^i} {\sum\limits_{m = 0}^{M - 1} {\frac{​{​{​{\left| {a_{kn}^i\zeta _k^i2\pi mT} \right|}^2}}}{​{\sigma _{r,k}^2}}} } \approx \frac{​{M(M - 1)(2M - 1){T^2}c_0^2{\sigma _{​{\rm{RCS}}}}}}{​{96\pi \sigma _{r,k}^2}}\frac{​{P_k^i}}{​{d{​{_k^i}^4}{f_{c,k}}^2}}                              (13)

- E\left[ {\frac{​{​{\partial ^2}{\rm{In}}f({​{\bf{Y}}^i}\left| {​{\theta ^i}} \right.)}}{​{\partial f_{D,k}^i\partial \tau _k^i}}} \right] = \sum\limits_{n \in {\cal N}_k^i} {\sum\limits_{m = 0}^{M - 1} {\frac{​{​{​{\left| {a_{kn}^i\zeta _k^i2\pi } \right|}^2}{f_{​{\rm{c,kn}}}}mT}}{​{\sigma _{r,k}^2}}} } = \frac{​{M(M - 1)Tc_0^2{\sigma _{​{\rm{RCS}}}}}}{​{32\pi \sigma _{r,k}^2}}\frac{​{P_k^i}}{​{d{​{_k^i}^4}{f_{c,k}}}}         (14)

因此由文献[Posterior_Cramer-Rao_bounds_for_discrete-time_nonlinear_filtering]有

{​{\bf{J}}_e}\left( {​{​{\bf{\theta }}^{\bf{i}}}_1} \right) = {\bf{J}}\left( {​{\bf{\theta }}_1^i,{​{\bf{\theta }}^{\bf{i}}}_1} \right) - {\bf{J}}\left( {​{\bf{\theta }}_1^i,{\bf{\theta }}_2^i} \right){\bf{J}}{\left( {​{\bf{\theta }}_2^i,{\bf{\theta }}_2^i} \right)^{ - 1}}{\bf{J}}{\left( {​{\bf{\theta }}_1^i,{\bf{\theta }}_2^i} \right)^{\rm{T}}}              (15)

{​{\bf{J}}_e}{\left( {​{​{\bf{\theta }}^{\bf{i}}}_1} \right)_{k,k}} = \frac{​{M(M + 1)c_0^2{\sigma _{​{\rm{RCS}}}}}}{​{32\pi (2M - 1)}}\frac{​{P_k^i}}{​{​{​{\left( {d_k^i} \right)}^4}\sigma _{r,k}^2}}                                 (16)

{\rm{CRLB}}\left( {\tau _k^i} \right) = \frac{​{32\pi (2M - 1)}}{​{M(M + 1)c_0^2{\sigma _{​{\rm{RCS}}}}}}\frac{​{​{​{\left( {d_k^i} \right)}^4}\sigma _{r,k}^2}}{​{P_k^i}}                              (17)

{​{\bf{J}}_e}{\left( {​{​{\bf{\theta }}^{\bf{i}}}_2} \right)_{k,k}} = \frac{​{​{T^2}M({M^2} - 1)c_0^2{\sigma _{​{\rm{RCS}}}}}}{​{192\pi }}\frac{​{P_k^i}}{​{​{f_{c,k}}^2{​{\left( {d_k^i} \right)}^4}\sigma _{r,k}^2}}                      (18)

{\rm{CRLB}}\left( {f_{D,k}^i} \right) = \frac{​{192\pi }}{​{​{T^2}M({M^2} - 1)c_0^2{\sigma _{​{\rm{RCS}}}}}}\frac{​{​{f_{c,k}}^2{​{\left( {d_k^i} \right)}^4}\sigma _{r,k}^2}}{​{P_k^i}}                  (19)

此时有\tau _k^i = \frac{2}{​{​{c_0}}}d_k^i = \frac{2}{​{​{c_0}}}{\left[ {​{​{\left( {x_0^i - x_k^i} \right)}^2} + {​{\left( {y_0^i - y_k^i} \right)}^2}} \right]^{1/2}},将{​{\bf{\theta }}^{\bf{i}}}_1{\omega ^i}的关系线性化,即

{​{\bf{\theta }}^{\bf{i}}}_1 = {f_1}({\omega ^i}) = {f_1}({\bar \omega ^i}) + {\Psi _i}({\omega ^i} - {\bar \omega ^i})                            (20)

其中{​{\bf{\Psi }}_i}为Jacbian矩阵

{​{\bf{\Psi }}_i} = \frac{​{\partial {​{\bf{\theta }}^i}_1}}{​{\partial {​{\bf{\omega }}^i}}} = \frac{2}{​{​{c_0}}}\left[ {\begin{array}{*{20}{l}} {\frac{​{x_0^i - x_1^i}}{​{d_1^i}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \frac{​{y_0^i - y_1^i}}{​{d_1^i}}}\\ \begin{array}{l} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \vdots {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \vdots \\ \frac{​{x_0^i - x_K^i}}{​{d_K^i}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \frac{​{y_0^i - y_K^i}}{​{d_K^i}} \end{array} \end{array}} \right]                              (21)

则由求导链式法则可以得到${\bf{J}}\left( {​{​{\bf{\omega }}^i}} \right) \approx {\bf{Q}}_i^{\rm{T}}{​{\bf{J}}_e}\left( {​{​{\bf{\theta }}^i}_1} \right){​{\bf{Q}}_i}$,已知

{​{\bf{J}}_e}{\left( {​{​{\bf{\theta }}^{\bf{i}}}_1} \right)_{k,k}} = \frac{​{M(M + 1)c_0^2{\sigma _{​{\rm{RCS}}}}}}{​{32\pi (2M - 1)}}\frac{​{P_k^i}}{​{​{​{\left( {d_k^i} \right)}^4}\sigma _{r,k}^2}}                               (22)

{\bf{J}}\left( {​{​{\bf{\omega }}^i}} \right) = \frac{​{M(M + 1){\sigma _{​{\rm{RCS}}}}}}{​{8\pi (2M - 1)}}\left[ {\begin{array}{*{20}{l}} {\sum\limits_{k \in {\cal K}} {\frac{​{P_k^i{​{\left( {x_0^i - x_k^i} \right)}^2}}}{​{d{​{_k^i}^6}\sigma _{r,k}^2}}} }&{\sum\limits_{k \in {\cal K}} {\frac{​{P_k^i\left( {x_0^i - x_k^i} \right)\left( {y_0^i - y_k^i} \right)}}{​{d{​{_k^i}^6}\sigma _{r,k}^2}}} }\\ {\sum\limits_{k \in {\cal K}} {\frac{​{P_k^i\left( {x_0^i - x_k^i} \right)\left( {y_0^i - y_k^i} \right)}}{​{d{​{_k^i}^6}\sigma _{r,k}^2}}} }&{\sum\limits_{k \in {\cal K}} {\frac{​{P_k^i{​{\left( {y_0^i - y_k^i} \right)}^2}}}{​{d{​{_k^i}^6}\sigma _{r,k}^2}}} } \end{array}} \right]         (23)

{\bf{J}}\left( {​{​{\bf{\omega }}^i}} \right) = {A_1}\sum\limits_{k \in {\cal K}} {\left[ {\begin{array}{*{20}{l}} {\frac{​{P_k^i{​{\left( {x_0^i - x_k^i} \right)}^2}}}{​{d{​{_k^i}^6}\sigma _{r,k}^2}}}&{\frac{​{P_k^i\left( {x_0^i - x_k^i} \right)\left( {y_0^i - y_k^i} \right)}}{​{d{​{_k^i}^6}\sigma _{r,k}^2}}}\\ {\frac{​{P_k^i\left( {x_0^i - x_k^i} \right)\left( {y_0^i - y_k^i} \right)}}{​{d{​{_k^i}^6}\sigma _{r,k}^2}}}&{\frac{​{P_k^i{​{\left( {y_0^i - y_k^i} \right)}^2}}}{​{d{​{_k^i}^6}\sigma _{r,k}^2}}} \end{array}} \right]}                    (24)

其中{A_1} = \frac{​{M(M + 1){\sigma _{​{\rm{RCS}}}}}}{​{8\pi (2M - 1)}},关于目标位置估计的CRLB矩阵为{\bf{J}}{\left( {​{​{\bf{\omega }}^i}} \right)^{ - 1}}

即:位置估计的克拉美罗下界为

{\left( {\sigma _l^i} \right)^2} \triangleq E\left[ {​{​{\left( {\hat x_T^i - x_T^i} \right)}^2} + {​{\left( {\hat y_T^i - y_T^i} \right)}^2}}\right] \geqslant {\left[ {​{\mathbf{J}}{​{\left( {​{​{\mathbf{\omega }}^i}} \right)}^{ - 1}}} \right]_{11}} + {\left[ {​{\mathbf{J}}{​{\left( {​{​{\mathbf{\omega }}^i}} \right)}^{ - 1}}} \right]_{22}}     (25)

再考虑多普勒频移的估计误差,同时又有

\begin{gathered} f_{D,k}^i = \frac{​{2{f_{c,k}}}}{​{​{c_0}d_k^i}}\left[ {\left( {v_{x,k}^i - v_{x,0}^i} \right)\left( {x_0^i - x_k^i} \right) + \left( {v_{y,k}^i - v_{y,0}^i} \right)\left( {y_0^i - y_k^i} \right)} \right] \hfill \\ = \frac{​{2{f_{c,k}}}}{​{​{c_0}d_k^i}}\left[ {\left( {v_{x,0}^i - v_{x,k}^i} \right)\left( {x_k^i - x_0^i} \right) + \left( {v_{y,0}^i - v_{y,k}^i} \right)\left( {y_k^i - y_0^i} \right)} \right] \hfill \\ \end{gathered}

{​{\mathbf{\theta }}^{\mathbf{i}}}_2$v_0^i$的关系线性化,即

{​{\mathbf{\theta }}^i}_2 = {f_2}(v_0^i) = {f_2}(\bar v_0^i) + {\Phi _i}(v_0^i - \bar v_0^i)                             (26)

其中{Q_i}为Jacbian矩阵

{\Phi _i} = \frac{​{\partial {​{\mathbf{\theta }}^i}_2}}{​{\partial v_0^i}} = \frac{2}{​{​{c_0}}}\left[ {\begin{array}{*{20}{l}} {\frac{​{​{f_{c,1}}\left( {x_1^i - x_0^i} \right)}}{​{d_1^i}}{\kern 44pt} \frac{​{​{f_{c,1}}\left( {y_1^i - y_0^i} \right)}}{​{d_1^i}}} \\ \begin{gathered} {\kern 14pt} \vdots {\kern 94pt} \vdots \hfill \\ \frac{​{​{f_{c,K}}\left( {x_K^i - x_0^i} \right)}}{​{d_K^i}}{\kern 14pt} \frac{​{​{f_{c,K}}\left( {y_K^i - y_0^i} \right)}}{​{d_K^i}} \hfill \\ \end{gathered} \end{array}} \right]                (27)

则由求导链式法则可以得到${\mathbf{J}}\left( {v_0^i} \right) \approx {\Phi _i}^{\text{T}}{​{\mathbf{J}}_e}\left( {​{​{\mathbf{\theta }}^i}_2} \right){\Phi _i}$,已知

{​{\mathbf{J}}_e}{\left( {​{​{\mathbf{\theta }}^{\mathbf{i}}}_2} \right)_{k,k}} = \frac{​{​{T^2}M({M^2} - 1)c_0^2{\sigma _{​{\text{RCS}}}}}}{​{192\pi }}\frac{​{P_k^i}}{​{​{f_{c,k}}^2{​{\left( {d_k^i} \right)}^4}\sigma _{r,k}^2}}                     (28)

{\mathbf{J}}\left( {v_0^i} \right) = {A_2}\sum\limits_{k \in \mathcal{K}} {\left[ {\begin{array}{*{20}{l}} {\frac{​{P_k^i{​{\left( {x_k^i - x_0^i} \right)}^2}}}{​{d{​{_k^i}^6}\sigma _{r,k}^2}}}&{\frac{​{P_k^i\left( {x_0^i - x_k^i} \right)\left( {y_0^i - y_k^i} \right)}}{​{d{​{_k^i}^6}\sigma _{r,k}^2}}} \\ {\frac{​{P_k^i\left( {x_0^i - x_k^i} \right)\left( {y_0^i - y_k^i} \right)}}{​{d{​{_k^i}^6}\sigma _{r,k}^2}}}&{\frac{​{P_k^i{​{\left( {y_0^i - y_k^i} \right)}^2}}}{​{d{​{_k^i}^6}\sigma _{r,k}^2}}} \end{array}} \right]}         (29)

其中{A_2} = \frac{​{​{T^2}M({M^2} - 1){\sigma _{​{\text{RCS}}}}}}{​{48\pi }},关于目标速度估计的CRLB矩阵为{\mathbf{J}}{\left( {v_0^i} \right)^{ - 1}}

即:速度估计的克拉美罗下界为

{\left( {\sigma _v^i} \right)^2} \triangleq E\left[ {​{​{\left( {\hat v_{x,T}^i - v_{x,T}^i} \right)}^2} + {​{\left( {\hat v_{y,T}^i - v_{y,T}^i} \right)}^2}} \right]\geq {\left[ {​{\mathbf{J}}{​{\left( {v_T^i} \right)}^{ - 1}}} \right]_{11}} + {\left[ {​{\mathbf{J}}{​{\left( {v_T^i} \right)}^{ - 1}}} \right]_{22}}

由此即得到多架无人机对目标进行测距后,所进行的目标位置估计和速度估计的克拉美罗界,针对该性能指标可以对通感一体化网络进行进一步优化。

标签:采样,OFDM,载波,CRLB,通感,信号,无人机
From: https://blog.csdn.net/panyu_kgd/article/details/141319656

相关文章