首页 > 其他分享 >人工神经网络是什么

人工神经网络是什么

时间:2024-08-08 11:23:26浏览次数:22  
标签:感知器 什么 多层 人工神经网络 神经网络 模型 输入 神经元

深度学习(Deep Learning)这一概念是由 Geoffrey Hinton(深度学习之父)于 2006 年提出,但它的起源时间要早得多,可追溯至 20 世纪四五十年代,也就是人类刚刚发明出电子计算机时就已经提出来了,但当时并非叫做深度学习,而是人工神经网络(artificial neural network, ANN),简称神经网络(NN),它是一种算法模型,其算法的构思灵感来源于生物神经网络。

深度学习作为一个新兴概念,谈起时都会涉及如何搭建神经网络,由此可见深度学习的核心思想仍是人工神经网络模型。目前的神经网络算法与刚刚诞生时相比有了很大的变化,但总的来说,基本的算法思想并没有改变。本节内容将主要围绕人工神经网络展开介绍。

MP神经元模型

人工神经网络是一种有监督学习算法,它试图通过模拟人脑神经系统对复杂信息的处理机制来构建一种数学模型。我们知道,神经元是构成生物神经系统的基本单元,而人工神经网络也不例外,它也是从神经元模型的基础上发展而来的。

1943 年,美国心理学家麦克洛奇(Mcculloch)和数学家皮兹(Pitts)提出了 M-P 神经元模型(取自两个提出者姓名的首字母),这是最早、也是最简单的神经网络算法的模型,该模型意义重大,从此开创了神经网络模型的理论研究。在正式介绍 MP 神经元模型前,我们不妨先了解一下大脑神经元。

1) 生物神经元

神经元是大脑神经系统重要组成单位,主要由细胞体、树突、轴突、突触组成。神经元是一种多输入单输出的信息处理单元,输入的电信号有两种,分别是兴奋性信号和抑制性信号。

树突,可以看作输入端,接受从从其他细胞传递过来的电信号;轴突可以看作输出端,传递电信号给其他细胞;突触,则可以看成 I/O 接口,用于连接不同神经元,单个神经元可以和上千个神经元进行连接;细胞体内存在膜电位,外界传递过来电流时会使膜电位发生变化,当电位升高到一个阈值时,神经元就会被激活,产生一个脉冲信号,传递到下一个神经元。
 

神经元结构


图1:生物神经元组成


为了便于大家理解神经元传递信号的过程,我们不妨把神经元看成一个水桶。水桶一侧的下方连接着多根水管(看做树突),水管即可以把桶里的水排出去,也可以将其他桶内的水输入进来,水管的粗细不同(理解为权重大小),对桶内水位的影响程度不同,当桶内的水位达到某一范围时(阈值),就能通过水桶另一侧的排水管将水(轴突)排出,从而降低水桶的水位。

2) M-P神经元

M-P 模型就是基于生物神经构建的一种数学模型,只过不它将生物神经元信息传导过程进行了抽象化,并以网络拓扑相关知识来表示。

M-P 模型是神经网络的基本组成单位,在神经网络中也称为『节点(node)』或者『单元(unit)』。节点从其他节点接受输入,或从外部源接受输入(即 x1、x2、1),每个输入都带有一个权重值(weight,即 w),权重大小取决于输入值的相对重要性。函数 f 位于节点处,它是一个关于 ω、x 的线性函数,记做 f(x,ω) ,输入 b 表示函数的偏置项,最后经过 f(w,x) 的计算得输出 Y。模型如下所示:
 

M-P模型


图2:神经元模型示例图


上述模型对于神经网络说来说具有重要的意义,它是神经网络研究的开端。您可能会很诧异,几个带有箭头线段、一个圆形竟然就能表示 M-P 神经元模型? 正所谓大道至简,它的确就是神经元模型,上图所示模型由 3 部分组成,从左往右依次为:神经元的输入、输入信号处理单元,以及神经元的输出。

M-P 模型采用数学模型模拟了生物神经元所包含的细胞体、树突、轴突和突出等生理特征。通过 M-P 模型提出了神经元的形式化数学描述和网络结构方法,从而证明了单个神经元能执行逻辑功能,但由于模型中的权重和偏置是人为设置的,因此该模型并不具备学习的能力。

3) M-P模型解析

我们知道,神经元是一种多端输入单端输出的信息处理单元,因此 M-P 神经元模型也遵循这个原理。神经元的输入端通常会被给予不同的权重,来权衡不同输入信号的重要程度,如图 2 所示是一个有 3 个输入,一个输出的神经元模型,该神经元模型接收 3 个输出信号,然后给予输入信号不同的权重,神经元的输入信号经过处理后得到神经元输出。注意,这里所说的信号可以理解为数据集中的数据样本。

4) 信息处理单元

介于输入和输出之间的圆圈称为输入信息处理单元(即节点),之所以画成圆圈也是一种约定俗成的表示方式,而这个信息处理单元可以看成一个函数,当给这个模型“喂入”一个数据时,就会产生一个对应的输出。早期的 MP 神经元模型可以看成一种线性分类器,通过检验 f(x,ω)  的正负来识别两种不同类别的时输入。由此可知,该模型需要正确设置权重参数,才能使模型的输出对应所期望的类别。

注意:这里的 x 是表示输入值,ω 是输入的权重值,f(x,ω) 是一个线性函数,这也决定了该模型只能解决简单的线性问题,而对于复杂的数据分布,就无法达到理想的拟合效果。

感知机模型

新事物的诞生需要大众的一个认知过程,并非一问世就能一鸣惊人,虽然早在 1943 年基于 M-P 神经元人工神经网模型就被提出,但当时并没有引起人们的重视。直到 20 世纪 50年代(1957年),美国学者罗森勃拉特提出了感知器(或称感知机)模型,这才引发了一次 AI 领域的研究热潮,因此从某种意义上来说,感知器模型是第一个具有学习能力的神经网络,该模型能根据每个类别的输入样本来学习权重。

1) 感知器模型

感知器模型,也可称为单层感知器,它是最简单的神经网络,它包含输入层和输出层,并且层与层之间直接相连。该模型从神经元模型的基础上发展而来,单层感知器能模拟逻辑与、逻辑或、逻辑非和逻辑与非等操作,单层感知器模型如下:
 

单层感知器模型


图3:感知器模型


虽然具备了学习的能力,但该模型只能解决简单的线性分类和线性回归问题,对于线性不可分问题(即异或问题,xor)仍无法解决(1969年,科学家明斯基和佩珀特证明)。如下图所示,无法找到一条直线可以把圆形和菱形分开:
 

非线性不可分问题


图4:线性不可分问题



感知器模型算法与神经元模型类似,是一个单层神经元结构,它首先对输入的数据进行加权求和,然后将得到的结果与阈值进行比较,假如与所期望的输出有较大误差,就对权值参数进行调整,反复多次,直到误差满足要求时为止。由上图可知单层感知器的输出为:
 


下面举个简单例子,看看单层感知器如何完成逻辑与运算(即 And,x1 ∧ x2):

令 w1 = w2 =1,θ = 1.5,则 y =f(1*x1+1*x2-1.5),显然,当 x1 和 x2 均为 1 时,y 的值为 1;而当 x1 和 x2 中有一个为 0 时,y 的值就为 0(通过 y 值的正负来取值,正值取值 1,负值取值 0,从而实现线性分类),当然逻辑或运算、与逻辑非运算也可通过此方法验证。

异或是一个数学运算符号,使用 ⊕ 来表示,计算机一般用 ^ 来表示。异或也叫半加运算,其运算法则相当于不带进位的二进制加法,用 1 表示真,用 0 表示假,运算法则为“同为 0,异为 1”。:

0⊕0=0
1⊕0=1
0⊕1=1
1⊕1=0

因此  w1、w2 和 θ 必须满足以下方程组:

0 + 0 - θ < 0 --> θ > 0
ω1 + 0 - θ ≥ 0 --> 0 ≥ θ - ω1
0 + ω2 - θ ≥ 0 --> 0 ≥ θ - ω2
ω1 + ω2 - θ < 0 --> θ > ω1 + ω2

将上述数值带入方程组后,只有第一个方程组是成立,其余方程均不成立。由此得出单层感知器模型是无法解决异或问题的(线性不可分问题)。

2) 激活函数

由上述函数表示式可知,感知器是一个二分类的线性模型,输入与输出结果是一组线性组合,这极大的限制了感知器的应用范围。但这一问题很快便得到了解决,我们只需将非线性函数以“激活函数”的身份加入神经网络算法中,就可以扩展感知器模型的应用范围。通过它对线性函数的输入结果进行非线性映射,然后将结果作为最终值输出。

激活函数的加入对后期神经网络的发展提供了很大支持,目前这种算法思想仍在神经网络算法中广泛使用。下图展示了带有激活函数的感知器模型:
 

感知器模型


图5:感知器模型


上述感知器模型依然模拟了神经元结构,有输入(input)、权重(weight)、前馈运算(feed forward)、激活函数(activation function)、输出(output)等部分组成。注意,这里的前馈运算指的是图 3 中的『加权求和』,即在没有使用激活函数时输入值的加权求和结果,有时也记做『logit』。

通过上述模型很容易实现二分类。只需将对加权求和的结果值进行判断即可,比如 x>0 为 1 类,若 x <=0 则为 0 类,这样就将输出结果值映射到了不同类别中,从而完成了二分类任务。激活函数公式如下:
 


 

若想采用感知器模型解决线性回归问题就可以使用 sigmoid 函数,该函数在《Logistic回归算法(分类问题)》 一节进行了介绍,激活函数公式如下:
 

激活函数sigmoid函数

注意:常用非线性激活函数有多种,比如 sigmoid 函数、Tanh 函数、Relu 函数等

3) 多层感知器模型

由于单层感知器模型无法解决非线性可分问题,即 xor 问题(1969年,马文·明斯基证明得出),这也导致了神经网络热潮的第一次大衰退。直至 20 世纪 80 年代,多层感知器模型(Multi -Layer Perceptrons,缩写为 MLP)的提出(1981年,韦伯斯提出),神经网络算法再次回归大众视野。

与单层感知器模型相比,该模型在输入层与输出层之间增加了隐藏层(Hidden),同时输出端,由原来一个增至两个以上(至少两个),从而增强了神经网络的表达能力。注意,对于只有一层隐藏层的神经网路,称为单隐层神经网络或者二层感知器,网络拓扑图如下所示:
 

多层感知器模型


图6:多层感知器模型


从图 6 不难发现,多层感知器模型是由多个感知器构造而成的,模型中每一个隐藏层节点(或称单元)都可以看做成一个感知器模型,当我们将这些感知器模型组合在一起时就可以得到“多层感知器模型”。输入层、隐藏层与输出层相互连接形成了神经网络,其中隐藏网络层、输出层都是拥有激活函数的功能神经元(或称节点)。

在神经网络中的隐藏层可以有多层,当隐藏层有多层,且形成一定“深度”时,神经网络便称为深度学习(deep learning),这就是“深度学习”名字的由来。因此,深度学习就是包含了多个隐藏层的多层感知器模型。如下图所示,是具有两个隐藏层的神经网络:
 

多层感知器模型


图7:多层感知器模型(两个隐藏层)

『深度学习』这一概念直到 2006 年才被提出,在这之前多层感知器模型被称为“人工神经网络”。从神经元模型到单层感知器模型再到多层感知器模型,这就是人工神经网络的发展过程。在神经网络中每层的节点与下一层节点相互连接,节点之间不存在同层连接,也不存跨层连接,这样的网络结构也被称为“多层前馈神经网络”(multi-layer feedforward neural),如果层与层之间的节点全部相互连接,则称为“全连接神经网络”,如下所示:
 

全连接神经网络


图8:全连接神经网络


多层感知器的诞生,解决了单层感知器模型无法解决的异或问题。下面简单分析一下解决过程。如图所示是包含了一个隐藏层的多层感知器模型:
 

多层感知器模型


图8:多层感知器解决异或问题


在多层感知器模型中,隐藏层中的每一个节点都是想当于一个感知器模型。下面将输入值(x1 和 x2)带入隐藏层节点,可得以下函数式(这里的函数指的是激活函数):

左隐藏层节点:f1(x1+x2-0.5)
右隐藏层节点:f2(-x1-x2+1.5)

由此可知输出层的函数式如下:

f3(f1+f2-1.5)

根据异或法则“同为 0,异为 1”,分别将 (0,1),(1,0),(0,0),(1,1)  带入上述三个函数分别进行计算,可得以下结果(正数为 1,负数为 0):

(0,1):f1(0+1-0.5)=1 f2(0-1+1.5)=1 --> f3(1+1-1.5)=1 
(1,0):f1(1+0-0.5)=1 f2(-1-0+1.5)=1 --> f3(1+1-1.5)=1 
(0,0):f1(0+0-0.5)=0 f2(0-0+1.5)=1 --> f3(0+1-1.5)=0
(1,1):f1(1+1-0.5)=1 f2(-1-1+1.5)=0 --> f3(1+0-1.5)=0

可以看出输出层 f3 函数的结果完全符合异或运算法则,因此多层感知器可以解决“异或问题”。从函数图像上来看,多层感知器使用两条直线解决了线性不可分问题:
 

线性不分问题


图9:分类区域


上图所示,位于红色直线之间的属于正类,而位于区域之外则属于负类。当然图像中只是包含了四个点而已,若是复杂的数据则可以选择不同的激活函数,比如 sigmoid 函数等。

反向传播算法

多层感知器的虽然解决了线性不可分问题,但随着隐藏层网络的加深,多层网络的训练和参数计算也越来越困难,因此多层感知器也显得“食之无味”。简单来说,就是当时的人们还不知道应该怎么训练多层神经网络,甚至不相信多层神经网络也是同样能被训练的。

直到 1986 年,深度学习教父 Hinton 等人对反向传播算法(Backpropagation algorithm,即误差逆向传播算法,简称 BP算法)进行了重新描述,证明了该算法可以解决网络层数过深导致的参数计算困难和误差传递等问题。

反向传播算法是一种用于训练神经网络的有监督学习算法,基于梯度下降(gradient descent)策略,以目标的负梯度方向对参数进行调整。但受限于当时(20世纪80年代)计算机算力不足等因素的影响,BP 算法只能以简单低效的方式来解决少数层神经网络训练问题,但即使如此,也已经弥足珍贵。

BP 算法的出现再次引发了 AI 研究的热潮,它是一款非常成功的神经网络算法,直到今天,该算法仍在深度学习领域发挥着重要的作用(用于训练多层神经网络)。

总结

经过几十年的发展,到目前为止,人工神经网络的发展进入了深度学习阶段,在这一阶段提出了许多新的神经网络模型,比如循环神经网络、卷积神经网络、生成对抗网络、深度信念网络等等。同时,深度学习又为人工神经网络引入了新的“部件”,比如卷积层、池化层等。

如今深度学习已非“人工神经网络”一词所能完全替代,可谓是“青出于蓝,而胜于蓝”,它已发展出一整套复杂的知识体系,哪怕只进行概要性地介绍也都会花费大量的篇幅,因此这里不做重点讨论。

纵观人工神经网络的发展历程,从生物神经元起源,再到多层感知器模型,历经三起两落,终于成为机器学习算法中的佼佼者。

标签:感知器,什么,多层,人工神经网络,神经网络,模型,输入,神经元
From: https://blog.csdn.net/weixin_66519663/article/details/141022458

相关文章

  • 169.254.x.x是什么地址
    ‌APIPA169.254.x.x地址是一个特殊的IP地址范围,被称为“APIPA”(AutomaticPrivateIPAddressing)地址,主要用于在网络通信设置不当时确保最基本的计算机网络连接性。这种地址是由操作系统自动分配给计算机的私有IP地址,当计算机无法通过‌DHCP(动态主机配置协议)服务......
  • HttpServletResponse response和HttpServletRequest request什么区别作用是什么
    HttpServletRequest和HttpServletResponse是JavaServletAPI中的两个核心接口,它们分别代表HTTP请求和HTTP响应。这两个对象在处理Web请求时扮演着不同但互补的角色:HttpServletRequest作用:表示客户端发送到服务器的HTTP请求。提供了访问请求参数、headers、cookies......
  • JMS和AMQP有什么区别吗
    JMS(JavaMessageService)和AMQP(AdvancedMessageQueuingProtocol)在消息队列和中间件领域都有广泛的应用,但它们之间存在一些关键的区别。以下是JMS和AMQP之间的主要区别:通信平台与语言支持JMS:JMS是Java平台中关于面向消息中间件(MOM)的API,它定义了统一的接口来对消息操作进行统......
  • 什么是反射
    反射的概念反射(Reflection)是Java的一种特性,它可以让程序在运行时获取自身的信息,并且动态地操作类或对象的属性、方法和构造器等。通过反射功能,可以让我们在不知道具体类名的情况下,依然能够实例化对象,调用方法以及设置属性。反射的作用反射的作用有以下几点:运行时探查类的信......
  • 尝试更新 GridDB 中的列,但无法弄清楚为什么它没有更新
    我正在尝试使用Python客户端更新GridDB容器中的数据。我已经设置了环境并编写了以下代码来执行更新。更新操作似乎不起作用,因为数据保持不变。关于我在这里可能做错了什么有什么想法吗?这是我正在阅读的文档:https://docs.griddb.net/gettingstarted/python/impor......
  • 为什么要用混合加密?
    首先我们需要先了解对称加密概念:采用单钥密码系统的加密方法,同一个密钥加密和解密,常用的对称加密算法DES、3DES、AES、RC2、RC5等。通俗的说就是你家大门锁和钥匙,你家里有都有大门钥匙来开这一把锁。那他有什么优点呢?1.加密计算量小,计算快,适合一些大数量......
  • 为什么并查集路径压缩不需要维护rank?
    在基于rank进行优化的并查集中,路径压缩确实不需要维护rank数组。这是因为路径压缩和rank优化有不同的目的和作用机制。让我们详细解释一下原因:Rank优化的目的:Rank优化的主要目的是在合并两个集合时,让较小的树成为较大的树的子树,以保持树的平衡性。这样可以避免树变得过于深,从而......
  • 为什么用代理IP访问不了网站?如何解决?
    代理IP可以为用户在访问网站时提供更多的便利性和匿名性,但有时用户使用代理IP后可能会遇到无法访问目标网站的问题。这可能会导致用户无法完成所需的业务要求,给用户带来麻烦。使用代理IP时,您可能会因为各种原因而无法访问您的网站。下面小编结合自己的亲身体验,为你分享代理IP无......
  • 什么是大模型?快速了解大模型基本概念
    在人工智能的世界里,大模型就像超级大脑一样,能够处理和理解大量的信息。你可能听说过ChatGPT,它就是大模型的一个典型代表。那么,什么是大模型呢?让我们一起来探索这个神奇的领域。什么是大模型?想象一下,如果你的大脑能够记住整个图书馆的所有书籍,并且能够理解每本书的内容,那么......