\(O(mlogn)\),单次查询为\(O(logn)\)
实际最坏情况下优于线段树,因为跑不满...
1.单点修改+区间求和
区间求和变为前缀和相减。
#include<iostream>
#include<cstdio>
const int maxn = 5e5 + 7;
int n, m;
int num;
int c[maxn];
inline int lowbit(int x) {
return x & -x;
}
int sum(int x) {
int ans = 0;
while (x) {
ans += c[x];
x -= lowbit(x);
}
return ans;
}
void add(int x, int k) {
while (x <= n) {
c[x] += k;
x += lowbit(x);
}
}
int main() {
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) {
scanf("%d", &num);
add(i, num);
}
while (m--) {
int opt, x, y;
scanf("%d%d%d", &opt, &x, &y);
if (opt == 1) add(x, y);
if (opt == 2) printf("%d\n", sum(y) - sum(x - 1));
}
return 0;
}
2.区间修改+单点查询
区间修改\([x,y]\):做差分,令\(C[x]+=k,C[y+1]-=k\)
单点查询:即差分数列的前k项和
\(O()\)
#include<iostream>
#include<cstdio>
const int maxn = 5e5 + 7;
int n, m;
int num;
int c[maxn], input[maxn];
inline int lowbit(int x) {
return x & -x;
}
int query(int x) {
int ans = 0;
while (x != 0) {
ans += c[x];
x -= lowbit(x);
}
return ans;
}
void add(int x, int k) {
while (x <= n) {
c[x] += k;
x += lowbit(x);
}
}
int main() {
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) {
scanf("%d", &input[i]);
}
while (m--) {
int opt, x, y, k;
scanf("%d", &opt);
if (opt == 1) {
scanf("%d%d%d", &x, &y, &k);
add(x, k);
add(y + 1, -k);
}
if (opt == 2) {
scanf("%d", &x);
printf("%d\n", input[x] + query(x));
}
}
return 0;
}
标签:return,树状,求和,lowbit,int,maxn,ans,include,模板
From: https://www.cnblogs.com/MrWangnacl/p/16814968.html