首页 > 其他分享 >2024暑假集训测试1

2024暑假集训测试1

时间:2024-07-09 11:20:33浏览次数:27  
标签:10 ok gcd int 2024 ge 暑假 集训 define

前言

image

排名历程:\(3→5→3\),因为 \(T1\) 的 special judge 是后来加上的,导致部分人挂了分,赛后安排了重测,就变成了 \(rank5\),赛后发现 \(T1\) 数据过水,重新更新了数据,卡掉了很多人的假做法,又成了 \(rank3\)。

T1

已知合法的分组有 \(\begin{cases} 0~0~0\\ 1~1~1\\ 2~2~2\\ 0~1~2\\ \end{cases}\)

  • 唐氏做法:

    统计 \(cnt_0,cnt_1,cnt_2\) ,找规律发现除了其中两个 \(\bmod 3=2\) ,剩下一个 \(\bmod 3<2\) 时,将 \(<2\) 的一组中拆出来两个补给其余两个形成 \(0~1~2\) ,这样 \(ans-1+2\),更优。

    其余情况均为将其各自分组,最后余下的形成 \(0~1~2\) 即可。

    由此 \(if~else\) 大模拟即可。

  • 正解:

    考虑枚举 \(0~1~2\) 的组数即可。

T2

  • 部分分 \(30pts\): \(n\le 1e7\) 的情况,暴力即可。

  • 正解:

    大模拟不想打了,总而言之就是找到一个周期,周期之外的再特殊处理即可。

    考虑到存在没有周期的情况,仅存在于二者完全势均力敌或单方面碾压的数据中,如 ABABABAB…… 就是完全势均力敌,最后比分一定为 \(0:0\);另一种当一方已经赢过两次而另一方一次没有赢过时(且此时已经循环超过 \(2\times k\)),结果一定为 \(x:0\) 或 \(0:x\)。此两种情况特判即可。

    模拟懒得写了,挂个官方题解吧:

    官方题解

    我们把 \(k\) 颗球看做是一轮。

    对于每一轮来说,如果在这一轮开始前,比分是 \(a:b\),那么这一轮结束后,比分是多少就是确定的。

    很明显可以看出来的一点是,开始时候两个人的当前局得分如果都 \(>11\) 的话,同时把两个人的分数减去同样的分数,使得两个人的分数都 \(≤11\),是不会影响这一轮结果的。

    那么,我们开三个数组 \(t,sa,sb\),分别记录。\(t_{a,b}\):最早什么时候,遇到这一轮开始前,比分是 \(a:b\)。\(sa_{a,b},sb_{a,b}\):这个时候,zwh/小红一共赢了多少局。

    那么,当我下一次在tim时候(此时总比分是 \(A:B\) )模拟遇到同样的 \(a,b\) 时,就可以视作,模拟的过程是每 \(tim−t_{a,b}\) 一个周期,每个周期内,大局的得分都是 \(A−sa_{a,b}:B−sb_{a,b}\)。

    直接跳过这个超级大周期,然后模拟完剩余的时间即可。

    由于开始的比分最多只有 \(12×12+1=145\) 种,因此模拟的总次数不会超过 \(145×k\)。

T3

  • 部分分 \(30pts\):爆搜即可。

  • 部分分 \(40pts\):再处理一下 \(k=1\) 的情况即可。

  • 正解 \(100pts\):

    • 结论:

      忽略字典序,将所有 & 放在前面,所有 | 放在后面一定是最优情况。

      • 证明:

        有 \(\begin{cases} x|y\ge \max(x,y)\\ x\&y\le \min(x,y)\\ x\&y\le x|y\\ \end{cases}\)

        因此有 \(x\&y|z\ge \max(x\&y,z)\ge \min(x|y,z)\ge x|y\&z\)。

        解释一下,若 \(x\&y\ge z\) ,\(\because x|y\ge x\&y\),\(∴ \max(x\&y,z)=x\&y\ge z=\min(x|y,z)\);

        反之若 \(x\&y<z\),\(\because x|y\ge x\&y\),\(∴ \min(x|y,z)\ge z=\max(x\&y,z)\)。

        由此继续推广,得上述结论,证毕。

    因此根据上述结论我们可以先求出最大答案,接下来处理字典序的问题。

    从前往后推,若该位填 |,后面的依然按照结论进行,若答案不变,则本位可以填 |,否则填 &

    由此 \(O(n^2)\) 算法已经可以得到 \(60pts\) 了。

    考虑 \(a_i<2^{60}\) ,可以按位计算,当计算到第 \(i\) 位时,对于区间 \([l,r]\),若填 &,只有 \(a_l\sim a_r\) 本位均为 \(1\) 时答案本位才能为 \(1\),否则为 \(0\);若填 |,只要 \(a_l\sim a_r\) 中有一个本位为 \(1\) 答案本位就可以为 \(1\),否则为 \(0\)。

    由此算法优化到 \(O(n\log(n))\),可以通过此题。

    点击查看代码
    #include<bits/stdc++.h>
    #define int long long
    #define endl '\n'
    #define sort stable_sort
    using namespace std;
    const int N=2e5+10,M=61;
    template<typename Tp> inline void read(Tp&x)
    {
        x=0;register bool z=true;
        register char c=getchar();
        for(;c<'0'||c>'9';c=getchar()) if(c=='-') z=0;
        for(;'0'<=c&&c<='9';c=getchar()) x=(x<<1)+(x<<3)+(c^48);
        x=(z?x:~x+1);
    }
    void wt(int x){if(x>9)wt(x/10);putchar((x%10)+'0');}
    void write(int x){if(x<0)putchar('-'),x=~x+1;wt(x);}
    int n,k,a[N],maxx,m,ans,now,b[M],sum[N][M];
    int check(int l,int now,int k)
    {
        if(l<=n-k)
        {
            for(int i=0;i<=m;i++) b[i]=sum[n-k][i]-sum[l-1][i];
            for(int i=0;i<=m;i++) 
                if(b[i]!=n-k-l+1&&(now>>i)&1)
                    now^=(1ll<<i); 
        }
        if(n-k+1<=n)
        {
            for(int i=0;i<=m;i++) b[i]=sum[n][i]-sum[n-k][i];
            for(int i=0;i<=m;i++)
                if(b[i]!=0) 
                    now|=(1ll<<i);
        }
        return now;
    }
    signed main()
    {
        read(n),read(k);
        for(int i=1;i<=n;i++) read(a[i]),maxx=max(maxx,a[i]);
        m=log2(maxx);
        for(int i=1;i<=n;i++)
        {
            for(int j=0;j<=m;j++) sum[i][j]=sum[i-1][j];
            for(int j=0;j<=m;j++) if((a[i]>>j)&1) sum[i][j]++;
        }
        ans=check(2,a[1],k);
        write(ans),puts("");
        now=a[1];
        for(int i=2;i<=n;i++)
            if(k>=1&&check(i+1,now|a[i],k-1)==ans)
                putchar('|'),now|=a[i],k--;
            else 
                putchar('&'),now&=a[i];
    }
    

T4

  • 赛时部分分都没打出来,直接看正解吧。

  • 正解:

    预处理一个布尔数组 \(ok_{l,r}\),表示区间 \([l,r]\) 能否全部删掉。

    区间 \(DP\) 处理,有:

    \[ok_{l,r}|=(ok_{l,k-1}\&ok_{k+1,r})\&([\gcd(a_{l-1},a_k)>1]|[\gcd(a_k,a_{r+1})>1]),k∈[l,r] \]

    初始值: \(\begin{cases} ok_{l,r}=1&l>r\\ ok_{i,i}=1&\gcd(a_{i-1},a_i)>1 || \gcd(a_i,a_{i+1})>1\\ \end{cases}\)

    此时需要假设 \(a_{l-1},a_{r+1}\) 没有被删掉,貌似假了,但是看到下面的 \(DP\) 式子就知道其是正确的了。

    \(f_i\) 表示若 \(a_i\) 不删,前 \(i\) 个元素中最多能删多少个,有:

    \[f_i=\max_{j=0}^{i-1}\{f_j+ok_{j+1,i-1}\times (i-j-1)\} \]

    答案为 \(f_{n+1}\)。

    预处理 \(\gcd\),复杂度为 \(O(n^3)\)。

    点击查看代码
    #include<bits/stdc++.h>
    #define int long long
    #define endl '\n'
    #define sort stable_sort
    using namespace std;
    const int N=510;
    template<typename Tp> inline void read(Tp&x)
    {
        x=0;register bool z=true;
        register char c=getchar();
        for(;c<'0'||c>'9';c=getchar()) if(c=='-') z=0;
        for(;'0'<=c&&c<='9';c=getchar()) x=(x<<1)+(x<<3)+(c^48);
        x=(z?x:~x+1);
    }
    void wt(int x){if(x>9)wt(x/10);putchar((x%10)+'0');}
    void write(int x){if(x<0)putchar('-'),x=~x+1;wt(x);}
    int n,a[N],gcd[N][N],f[N];
    bool ok[N][N];
    int Gcd(int a,int b) {return b==0?a:Gcd(b,a%b);}
    signed main()
    {
        read(n);
        for(int i=1;i<=n;i++) read(a[i]);
        for(int i=1;i<=n;i++)
            for(int j=i;j<=n;j++)
                gcd[j][i]=gcd[i][j]=Gcd(a[i],a[j]);
        for(int i=1;i<=n+1;i++)
            for(int j=0;j<i;j++)
                ok[i][j]=1;
        for(int i=1;i<=n;i++)
            if(gcd[i][i+1]>1||gcd[i-1][i]>1) ok[i][i]=1;
        for(int i=1;i<=n;i++)
            for(int l=1;l+i-1<=n;l++)
            {
                int r=l+i-1;
                for(int k=l;k<=r;k++)
                {
                    ok[l][r]|=(ok[l][k-1]&ok[k+1][r])&(gcd[k][l-1]>1|gcd[k][r+1]>1);
                    if(ok[l][r]==1) break;
                }
            }
        for(int i=1;i<=n+1;i++)
            for(int j=0;j<=i-1;j++)
                    f[i]=max(f[i],f[j]+(i-j-1)*ok[j+1][i-1]);
        write(f[n+1]);
    }
    

T5

  • 部分分 \(15pts\):对于 \(n\le 8\) 的数据,直接爆搜。

  • 部分分 \(60pts\):对于所有 \(n\le 20\) 的数据,状压优化概率 \(DP\)。

  • 部分分 \(85pts\):

    利用数学模型,对于 \(5\) 个数的排列,另其前三个数的顺序确定,则其概率为 \(\dfrac{3!}{A_{5}^{3}}\) ,此时不管另其前三个顺序为 a,b,c 还是 b,a,c 等概率都是一样的。

    枚举最后一个听的歌为 \(x\),考虑其他的歌,定义 \(f_{i,j,k}\) 表示对于前 \(i\) 首歌,选择了 \(j\) 首,使其愉悦值为 \(k\) 的方案数,第一维可以滚掉,即典型的 \(01\) 背包。

    最后统计答案为 \(ans_x=\sum\limits_{j=0}^{n-1}\sum\limits_{k<S\&k+a_x\ge S}f_{j,k}\times\dfrac{(j+1)!}{n}\)。

    复杂度为 \(O(n^3S)\)。

  • 正解:

    在 \(85pts\) 部分分基础上进行优化。

    考虑先将所有 \(i\) 对于 \(f_{j,k}\) 处理出来,当枚举到最后一个听的歌为 \(i\) 时将 \(i\) 的贡献去除掉,处理完再加回来,从而使复杂度优化到 \(O(n^2S)\)。

    基于 \(01\) 背包倒叙循环 \(j\) 使 \(f_{j-1,k}\) 的只能对 \(f_{j,k+a_i}\) 进行一次贡献,得到 \(ins\) 操作:

    for(int j=n;j>=1;j--)
        for(int k=0;k<s-a[i];k++)
            f[j][k+a[i]]+=f[j-1][k];
    

    考虑如何将其撤销,若依旧将 \(j\) 倒叙循环,我们知道现在的 \(f_{j-1,k}\) 已经今非昔比了,再这么做会减去比应有的更多的贡献,由此将 \(j\) 正序循环,现将 \(f_{j-1,k}\) 变回原来的模样,再另 \(f_{j,k+a_i}\) 减去 \(f_{j-1,k}\) 的贡献;感性理解就是之前怎么搞的,现在就反着搞回去。由此得到 \(del\) 操作:

    for(int j=1;j<=n;j--)
        for(int k=0;k<s-a[i];k++)
            f[j][k+a[i]]-=f[j-1][k];
    

    其余同 \(85pts\) 做法。

    点击查看代码
    #include<bits/stdc++.h>
    #define int long long
    #define endl '\n'
    #define sort stable_sort
    using namespace std;
    const int N=110,M=1e4+10,P=998244353;
    template<typename Tp> inline void read(Tp&x)
    {
        x=0;register bool z=true;
        register char c=getchar();
        for(;c<'0'||c>'9';c=getchar()) if(c=='-') z=0;
        for(;'0'<=c&&c<='9';c=getchar()) x=(x<<1)+(x<<3)+(c^48);
        x=(z?x:~x+1);
    }
    void wt(int x){if(x>9)wt(x/10);putchar((x%10)+'0');}
    void write(int x){if(x<0)putchar('-'),x=~x+1;wt(x);}
    int n,m,a[N],jc[N],f[N][M];
    int qpow(int a,int b)
    {
        int ans=1;
        for(;b;b>>=1)
        {
            if(b&1) (ans*=a)%=P;
            (a*=a)%=P;
        }
        return ans;
    }
    int A(int n,int m)
    {
        if(n<m) return 0;
        return jc[n]*qpow(jc[n-m],P-2)%P;
    }
    void add(int &x,int y) {x=((x+y)%P+P)%P;}
    void ins(int i)
    {
        for(int j=n;j>=1;j--)
            for(int k=0;k<m-a[i];k++)
                add(f[j][k+a[i]],f[j-1][k]);
    }
    void del(int i)
    {
        for(int j=1;j<=n;j++)
            for(int k=0;k<m-a[i];k++)
                add(f[j][k+a[i]],-f[j-1][k]);
    }
    signed main()
    {
        read(n),read(m);
        for(int i=1;i<=n;i++) read(a[i]);
        jc[0]=1;
        for(int i=1;i<=n;i++) jc[i]=jc[i-1]*i%P;
        f[0][0]=1;
        for(int i=1;i<=n;i++) ins(i);
        for(int i=1;i<=n;i++)
        {
            del(i);
            int ans=0;
            for(int j=0;j<=n-1;j++)
                for(int k=m-a[i];k<m;k++)
                    add(ans,f[j][k]*jc[j]%P*qpow(A(n,j+1),P-2)%P);
            ins(i);
            write(ans),putchar(' ');
        }
    }
    

    因为我懒得预处理所以多了个 \(\log\)。

总结

要具备一些 \(OIer\) 的基本素养,不要没事就想着 \(if~else\)。

合理分配耗时间,不要因思维失误浪费过多时间,本次模拟赛大多数人都是打不完题从而挂分。

分数还是太平凡了,得来的分都没什么营养价值,能力依旧不足,需要提升思维能力。

标签:10,ok,gcd,int,2024,ge,暑假,集训,define
From: https://www.cnblogs.com/Charlieljk/p/18291024

相关文章

  • 2024.07.09【读书笔记】|医疗科技创新流程(第二章 创新创造 概念探索与测试案例分析1)
    案例一:Oculeve-神经刺激治疗干眼症背景与挑战干眼症(DryEyeDisease,DED)是一种常见的眼部疾病,影响着数百万美国人的生活质量。该病症由泪液不足或蒸发过快引起,导致眼表炎症、疼痛、灼热感、异物感和视力受损。Oculeve团队认识到,尽管市场上有人工泪液等治疗方法,但这些方......
  • SMU Summer 2024 Contest Round 1
    SequenceDecomposing1.题意其实就是要我们找共有多少个最长的上升的子序列,也就是理解成可以找到几个尽量长的队伍(最少LIS不相交覆盖)2.我们开一个multiset,然后先放进去第一个数,由于multiset会对元素自动从小到大排序,那么我们放进的队尾,也是排序好的,然后从第二个数开始遍历,检查一......
  • 2024码蹄杯职高省赛第三场初赛全题解
    其实吧对于码蹄杯省赛的话,第三场是一千五百多人,百分之25的获奖率,然后前四百名左右就可以获奖,根据排行来看大概是六题左右,其中大概就四题要点脑子,其余的基本上属于语法题,也就是13题中如果语法没问题的话,九题是很轻松的,因为都是青铜白银题,语法没问题的话就OK的,然后就是一个P序列,......
  • 题解(2024.7.8贪心)
    1.Teleporters(HardVersion)题意:有n+2个位置:0~n+1,给定n个数\(a_1\)~\(a_n\),有以下操作:向左/右移动一格,代价为1。传送回0位置或者n+1位置,记你当前的位置为i,则代价为\(a_i\)。每个位置只能发动一次传送。求最大传送次数思路:因为每次传送都会回到0/n+1号点,所以,到......
  • 2024已过半,还没试过在vue3中使用ioc容器吗?
    Vue3已经非常强大和灵活了,为什么还要引入IOC容器呢?IOC容器离不开Class,那么我们就从Class谈起Class的应用场景一提起Class,大家一定会想到这是Vue官方不再推荐的代码范式。其实,更确切的说,Vue官方是不推荐基于Class来定义Vue组件。如图所示:社区确实有几款基于Clas......
  • 2024年7个最佳WooCommerce商城案例
    WooCommerce毫无疑问是最受欢迎的电子商务平台。截至2021年,它的下载量已超过8230万次,运行的网站超过380万个。 就市场份额而言,WooCommerce高达40.9%—比紧随其后的竞争对手Shopify高出近15%。 这些数字说明了WooCommerce的规模有多大,以及无数电子商务品......
  • 南京外国语学校暑期集训7/8号排序2
    显然,这道题使用快排第k大做,快排第k大思想:(下标从1开始)每次找一个key值,一轮后可以得到key在原数组中的位置(暂且称之为a),把a和n-k+1值比较,一样就返回,小就往左边找,大就往右边找。然后原数组在main里按题目要求初始化一下就行了点击查看代码#include<bits/stdc++.h>usingnamespac......
  • 9个用于测试自动化的最佳AI测试工具(2024)
    选择一款优质的基于生成式AI人工智能的测试工具能够确保测试过程的准确性和效率,从而加速整个软件测试周期。相反,设计不佳的测试工具可能无法发现错误,并可能存在安全问题。它们可能产生误报或漏报,误导开发与测试团队,导致潜在的软件故障。  1、testRigortestRigor是一个基......
  • 2024/7/8 笔记
    CF1656Hhttps://www.luogu.com.cn/problem/CF1656H参考DaiRuiChen007的题解:code:usingnamespacestd;#definell__int128_tconstintmaxn=1e3+10;llgcd(lla,llb){ returnb?gcd(b,a%b):a;}constintN=1024,N2=N<<2;structstree{ lltree[N2];......
  • 国开大学2024《电子商务法律与法规(统设课)》
    一、单选题1.2017年8月18日()挂牌成立,这是全国第一家集中审理涉网案件的试点法院。A.北京互联网法院B.广州互联网法院C.杭州互联网法院D.上海互联网法院答案:C2.电子合同是平等主体之间以()的形式达成的,设立、变更、终止民事权利义务关系的协议。A.电子签名B.数......