初步了解 机器学习
"""
sklearn数据集使用
:return:
"""
def dict_demo():
"""
字典特征抽取
:return:
"""
data = [{'city': '北京','temperature':100}, {'city': '上海','temperature':60}, {'city': '深圳','temperature':30}]
# 1、实例化一个转换器类
transfer = DictVectorizer(sparse=False)
# 2、调用fit_transform()
data_new = transfer.fit_transform(data)
print("data_new:\n", data_new.toarray(), type(data_new))
print("特征名字:\n", transfer.get_feature_names_out_out())
return None
transfer = CountVectorizer(stop_words=["is", "too"])
# 1、实例化一个转换器类
transfer = CountVectorizer()
def cut_word(text):
"""
进行中文分词:"我爱北京天安门" --> "我 爱 北京 天安门"
:param text:
:return:
"""
return " ".join(list(jieba.cut(text)))
标签:city,return,temperature,2024.7,transfer,new,data
From: https://www.cnblogs.com/258-333/p/18289126