首页 > 其他分享 >stm32学习笔记---USART串口数据包(代码部分)串口收发HEX数据包/文本数据包

stm32学习笔记---USART串口数据包(代码部分)串口收发HEX数据包/文本数据包

时间:2024-07-04 13:31:06浏览次数:16  
标签:NVIC USART --- InitStructure 串口 GPIO Serial 数据包

目录

第一个代码:串口收发HEX数据包

Serial.c

Serial.h

Main.c

第二个程序:串口收发文本数据包

Serial.c

Serial.h

Main.c


声明:本专栏是本人跟着B站江科大的视频的学习过程中记录下来的笔记,我之所以记录下来是为了方便自己日后复习。如果你也是跟着江科大的视频学习的,可以配套本专栏食用,如有问题可以QQ交流群:963138186

本节我们来写一下串口收发数据包的代码

第一个代码:串口收发HEX数据包

接线图

和上节的接线基本一样,只是在PB1口接了一个按键,用于控制。

复制上节的工程并改名

我们在上节的Serial.c文件里加上HEX收发数据包的部分,定义的格式就和上一篇博客中说的HEX数据包接收固定包长,含包头包尾的这个思路一样,就按这个写状态机的思路写。

为了收发数据包,我们先定义两个缓冲区的数组。

这四个数据只存储发送或接收的载荷数据,包头包尾就不存了。

初始化的代码都不需要更改,把上节的这个函数删掉

然后我们先写一个send packet的函数。我们想要的效果是调用一下这个函数,Tx packet数组的四个数据就会自动加上包头报尾发送出去。

接下来我们就来写一下接收数据包的代码

首先在接收中断函数里,我们就需要用状态机来执行接收逻辑了,这就按上面那个状态转移图来写。

首先我们要定义一个标志当前状态的变量s,在中断这里,我们可以在函数里面定义一个静态变量RxState当成这个状态变量s

然后根RxState的不同,需要进入不同的处理程序。

注意:这里一定是要用else if,如果只用3个并列的If,可能在状态转移的时候会出现问题,比如在状态0,你想转移的状态1就置RxState等于1,结果就会造成下面状态1的条件就立马满足了,这样会出现连续两个if都同时成立的情况,这个情况我们不希望出现。

所以这里使用else if,保证每次进来之后,只能选择执行其中一个状态的代码,或者你用switch case语句,也可以保证只有一个条件满足。

这就是状态选择的部分。然后就依次写每个状态执行的操作和状态转移条件就行了。

这个程序还隐藏有一个问题,就是这个Serial_RxPacket数组,它是一个同时被写入,又同时被读出的数组。在中断函数里,我们会依次写入它,在主函数里,我们又会依次读出它。这会造成数据包之间可能会混在一起。比如读出的过程太慢了,前面两个数据刚读出来,等了一会儿才继续往后读取。这时后面的数据就有可能会刷新为下一个数据包的数据也就是读出的数据可能一部分属于上一个数据包另一部分属于下一个数据包。

解决方法可以在接收部分加入判断就是在每个数据包读取处理完毕后再接收下一个数据包。当然,很多情况下其实还可以不进行处理,像这种hex数据包多是用于传输各种传感器的每个独立数据,比如陀螺仪的xyz轴数据,温湿度数据等等,它们相邻数据包之间的数据具有连续性,这样即使相邻数据包混在一起了,也没关系。所以这种情况下就不需要关心这个问题,具体到底怎么处理,还需要大家结合实际情况来操作了,这里就提一下这个可能存在的问题。大家了解一下就行了。

我们这个收发hex数据包的程序大概就讲完了。

接下来加上按键部分的代码,现象是按一下按键变换一下数据,发送到串口助手上。

定义一个变量

然后在主函数中实现按键的控制就行

Serial.c

#include "stm32f10x.h"                  // Device header
#include <stdio.h>
#include <stdarg.h>

uint8_t Serial_TxPacket[4];				//定义发送数据包数组,数据包格式:FF 01 02 03 04 FE
uint8_t Serial_RxPacket[4];				//定义接收数据包数组
uint8_t Serial_RxFlag;					//定义接收数据包标志位,如果收到一个数据包,就置RxFlag

/**
  * 函    数:串口初始化
  * 参    数:无
  * 返 回 值:无
  */
void Serial_Init(void)
{
	/*开启时钟*/
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);	//开启USART1的时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);	//开启GPIOA的时钟
	
	/*GPIO初始化*/
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);					//将PA9引脚初始化为复用推挽输出
	
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);					//将PA10引脚初始化为上拉输入
	
	/*USART初始化*/
	USART_InitTypeDef USART_InitStructure;					//定义结构体变量
	USART_InitStructure.USART_BaudRate = 9600;				//波特率
	USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;	//硬件流控制,不需要
	USART_InitStructure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx;	//模式,发送模式和接收模式均选择
	USART_InitStructure.USART_Parity = USART_Parity_No;		//奇偶校验,不需要
	USART_InitStructure.USART_StopBits = USART_StopBits_1;	//停止位,选择1位
	USART_InitStructure.USART_WordLength = USART_WordLength_8b;		//字长,选择8位
	USART_Init(USART1, &USART_InitStructure);				//将结构体变量交给USART_Init,配置USART1
	
	/*中断输出配置*/
	USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);			//开启串口接收数据的中断
	
	/*NVIC中断分组*/
	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);			//配置NVIC为分组2
	
	/*NVIC配置*/
	NVIC_InitTypeDef NVIC_InitStructure;					//定义结构体变量
	NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;		//选择配置NVIC的USART1线
	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;			//指定NVIC线路使能
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;		//指定NVIC线路的抢占优先级为1
	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;		//指定NVIC线路的响应优先级为1
	NVIC_Init(&NVIC_InitStructure);							//将结构体变量交给NVIC_Init,配置NVIC外设
	
	/*USART使能*/
	USART_Cmd(USART1, ENABLE);								//使能USART1,串口开始运行
}

/**
  * 函    数:串口发送一个字节
  * 参    数:Byte 要发送的一个字节
  * 返 回 值:无
  */
void Serial_SendByte(uint8_t Byte)
{
	USART_SendData(USART1, Byte);		//将字节数据写入数据寄存器,写入后USART自动生成时序波形
	while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);	//等待发送完成
	/*下次写入数据寄存器会自动清除发送完成标志位,故此循环后,无需清除标志位*/
}

/**
  * 函    数:串口发送一个数组
  * 参    数:Array 要发送数组的首地址
  * 参    数:Length 要发送数组的长度
  * 返 回 值:无
  */
void Serial_SendArray(uint8_t *Array, uint16_t Length)
{
	uint16_t i;
	for (i = 0; i < Length; i ++)		//遍历数组
	{
		Serial_SendByte(Array[i]);		//依次调用Serial_SendByte发送每个字节数据
	}
}

/**
  * 函    数:串口发送一个字符串
  * 参    数:String 要发送字符串的首地址
  * 返 回 值:无
  */
void Serial_SendString(char *String)
{
	uint8_t i;
	for (i = 0; String[i] != '\0'; i ++)//遍历字符数组(字符串),遇到字符串结束标志位后停止
	{
		Serial_SendByte(String[i]);		//依次调用Serial_SendByte发送每个字节数据
	}
}

/**
  * 函    数:次方函数(内部使用)
  * 返 回 值:返回值等于X的Y次方
  */
uint32_t Serial_Pow(uint32_t X, uint32_t Y)
{
	uint32_t Result = 1;	//设置结果初值为1
	while (Y --)			//执行Y次
	{
		Result *= X;		//将X累乘到结果
	}
	return Result;
}

/**
  * 函    数:串口发送数字
  * 参    数:Number 要发送的数字,范围:0~4294967295
  * 参    数:Length 要发送数字的长度,范围:0~10
  * 返 回 值:无
  */
void Serial_SendNumber(uint32_t Number, uint8_t Length)
{
	uint8_t i;
	for (i = 0; i < Length; i ++)		//根据数字长度遍历数字的每一位
	{
		Serial_SendByte(Number / Serial_Pow(10, Length - i - 1) % 10 + '0');	//依次调用Serial_SendByte发送每位数字
	}
}

/**
  * 函    数:使用printf需要重定向的底层函数
  * 参    数:保持原始格式即可,无需变动
  * 返 回 值:保持原始格式即可,无需变动
  */
int fputc(int ch, FILE *f)
{
	Serial_SendByte(ch);			//将printf的底层重定向到自己的发送字节函数
	return ch;
}

/**
  * 函    数:自己封装的prinf函数
  * 参    数:format 格式化字符串
  * 参    数:... 可变的参数列表
  * 返 回 值:无
  */
void Serial_Printf(char *format, ...)
{
	char String[100];				//定义字符数组
	va_list arg;					//定义可变参数列表数据类型的变量arg
	va_start(arg, format);			//从format开始,接收参数列表到arg变量
	vsprintf(String, format, arg);	//使用vsprintf打印格式化字符串和参数列表到字符数组中
	va_end(arg);					//结束变量arg
	Serial_SendString(String);		//串口发送字符数组(字符串)
}

/**
  * 函    数:串口发送数据包
  * 参    数:无
  * 返 回 值:无
  * 说    明:调用此函数后,Serial_TxPacket数组的内容将加上包头(FF)包尾(FE)后,作为数据包发送出去
  */
void Serial_SendPacket(void)
{
	Serial_SendByte(0xFF);//加上包头
	Serial_SendArray(Serial_TxPacket, 4);//数据
	Serial_SendByte(0xFE);//加上包尾
}

/**
  * 函    数:获取串口接收数据包标志位
  * 参    数:无
  * 返 回 值:串口接收数据包标志位,范围:0~1,接收到数据包后,标志位置1,读取后标志位自动清零
  */
uint8_t Serial_GetRxFlag(void)
{
	if (Serial_RxFlag == 1)			//如果标志位为1
	{
		Serial_RxFlag = 0;
		return 1;					//则返回1,并自动清零标志位
	}
	return 0;						//如果标志位为0,则返回0
}

/**
  * 函    数:USART1中断函数
  * 参    数:无
  * 返 回 值:无
  * 注意事项:此函数为中断函数,无需调用,中断触发后自动执行
  *           函数名为预留的指定名称,可以从启动文件复制
  *           请确保函数名正确,不能有任何差异,否则中断函数将不能进入
  */
void USART1_IRQHandler(void)
{
	static uint8_t RxState = 0;		//定义表示当前状态机状态的静态变量
	static uint8_t pRxPacket = 0;	//定义表示当前接收数据位置的静态变量,其实就是记录接收到哪一个数据了
	if (USART_GetITStatus(USART1, USART_IT_RXNE) == SET)		//判断是否是USART1的接收事件触发的中断
	{
		uint8_t RxData = USART_ReceiveData(USART1);				//读取数据寄存器,存放在接收的数据变量
		
		/*使用状态机的思路,依次处理数据包的不同部分*/
		
		/*当前状态为0,接收数据包包头*/
		if (RxState == 0)
		{
			if (RxData == 0xFF)			//如果数据确实是包头
			{
				RxState = 1;			//置下一个状态
				pRxPacket = 0;			//数据包的位置归零
			}
		}
		/*当前状态为1,接收数据包数据*/
		else if (RxState == 1)
		{
			Serial_RxPacket[pRxPacket] = RxData;	//将数据存入数据包数组的指定位置
			pRxPacket ++;				//数据包的位置自增
			if (pRxPacket >= 4)			//如果收够4个数据
			{
				RxState = 2;			//置下一个状态
			}
		}
		/*当前状态为2,接收数据包包尾*/
		else if (RxState == 2)
		{
			if (RxData == 0xFE)			//如果数据确实是包尾部
			{
				RxState = 0;			//状态归0
				Serial_RxFlag = 1;		//接收数据包标志位置1,成功接收一个数据包
			}
		}
		
		USART_ClearITPendingBit(USART1, USART_IT_RXNE);		//清除标志位
	}
}

Serial.h

#ifndef __SERIAL_H
#define __SERIAL_H

#include <stdio.h>

extern uint8_t Serial_TxPacket[];
extern uint8_t Serial_RxPacket[];

void Serial_Init(void);
void Serial_SendByte(uint8_t Byte);
void Serial_SendArray(uint8_t *Array, uint16_t Length);
void Serial_SendString(char *String);
void Serial_SendNumber(uint32_t Number, uint8_t Length);
void Serial_Printf(char *format, ...);

void Serial_SendPacket(void);
uint8_t Serial_GetRxFlag(void);

#endif

Main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Serial.h"
#include "Key.h"

uint8_t KeyNum;			//定义用于接收按键键码的变量

int main(void)
{
	/*模块初始化*/
	OLED_Init();		//OLED初始化
	Key_Init();			//按键初始化
	Serial_Init();		//串口初始化
	
	/*显示静态字符串*/
	OLED_ShowString(1, 1, "TxPacket");
	OLED_ShowString(3, 1, "RxPacket");
	
	/*设置发送数据包数组的初始值,用于测试*/
	Serial_TxPacket[0] = 0x01;
	Serial_TxPacket[1] = 0x02;
	Serial_TxPacket[2] = 0x03;
	Serial_TxPacket[3] = 0x04;
	
	while (1)
	{
		KeyNum = Key_GetNum();			//获取按键键码
		if (KeyNum == 1)				//按键1按下
		{
			Serial_TxPacket[0] ++;		//测试数据自增
			Serial_TxPacket[1] ++;
			Serial_TxPacket[2] ++;
			Serial_TxPacket[3] ++;
			
			Serial_SendPacket();		//串口发送数据包Serial_TxPacket
			
			OLED_ShowHexNum(2, 1, Serial_TxPacket[0], 2);	//显示发送的数据包
			OLED_ShowHexNum(2, 4, Serial_TxPacket[1], 2);
			OLED_ShowHexNum(2, 7, Serial_TxPacket[2], 2);
			OLED_ShowHexNum(2, 10, Serial_TxPacket[3], 2);
		}
		
		if (Serial_GetRxFlag() == 1)	//如果接收到数据包
		{
			OLED_ShowHexNum(4, 1, Serial_RxPacket[0], 2);	//显示接收的数据包
			OLED_ShowHexNum(4, 4, Serial_RxPacket[1], 2);
			OLED_ShowHexNum(4, 7, Serial_RxPacket[2], 2);
			OLED_ShowHexNum(4, 10, Serial_RxPacket[3], 2);
		}
	}
}

运行结果

首先是STM32发送数据包。按一下按键STM32上的OLED变换一次数据,串口助手接收到数据

然后是STM32接收数据包。我们发送指定格式的数据包,STM32上的OLED显示接收到数据包

第二个程序:串口收发文本数据包

接线图:

在PA1口接了一个LED,用于指示。

复制上一个工程并改名

我们在上一个工程的基础上改,按键部分的代码就不要了。

接下来就按上节讲过的文本数据包接收的思路来写,这里是可变包长,含包头包尾。

我们这里就只写接收的部分,因为发送的话不方便像hex数组一样一个个更改的。所以发送就直接在主函数里sendstring或者printf就行了,非常简单。

所以这个发送数据包的函数就不要了

接收部分我们来来实现一下。

数组的长度给多点,防止溢出,给个100,这要求单条指令最长不能超过一百个字符。

之后是中断的状态机部分,参考上面状态转移图写。

接下来就把LED部分的代码加进来就行

首先是判断字符串是不是等于我们规定的指令再执行相应的操作。判断字符串要用到字符串处理函数,要包含头文件#include "string.h"。

在这里我们判断两个字符串是否相等,需要用到strcmp函数,如果不知道这个函数的用法可以去翻一下我的C语言复习专栏,在这篇博文中我详细介绍了字符串处理函数。

嵌入式全栈开发学习笔记---C语言笔试复习大全10-CSDN博客

还有个问题需要说明同样还是之前的个问题。如果连续发送数据包程序处理不及时可能导致数据包错位。

在这里,文本数据包,每个数据包是独立的,不存在连续,这如果错位了问题就比较大。所以在程序这里我们可以修改一下,等每次处理完成之后,再开始接收下一个数据包

我们可以这样在中断函数中等待包头的时候再加一个条件,如果数据等于包头并且Serial_RxFlag等于等于0才执行接收,否则就是发的太快了,还没处理完,就跳过这个数据包。

然后上面这个读取标志位之后立刻清零的函数先删掉。

Serial.c

#include "stm32f10x.h"                  // Device header
#include <stdio.h>
#include <stdarg.h>

char Serial_RxPacket[100];				//定义接收数据包数组,数据包格式"@MSG\r\n"
uint8_t Serial_RxFlag;					//定义接收数据包标志位

/**
  * 函    数:串口初始化
  * 参    数:无
  * 返 回 值:无
  */
void Serial_Init(void)
{
	/*开启时钟*/
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);	//开启USART1的时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);	//开启GPIOA的时钟
	
	/*GPIO初始化*/
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);					//将PA9引脚初始化为复用推挽输出
	
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);					//将PA10引脚初始化为上拉输入
	
	/*USART初始化*/
	USART_InitTypeDef USART_InitStructure;					//定义结构体变量
	USART_InitStructure.USART_BaudRate = 9600;				//波特率
	USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;	//硬件流控制,不需要
	USART_InitStructure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx;	//模式,发送模式和接收模式均选择
	USART_InitStructure.USART_Parity = USART_Parity_No;		//奇偶校验,不需要
	USART_InitStructure.USART_StopBits = USART_StopBits_1;	//停止位,选择1位
	USART_InitStructure.USART_WordLength = USART_WordLength_8b;		//字长,选择8位
	USART_Init(USART1, &USART_InitStructure);				//将结构体变量交给USART_Init,配置USART1
	
	/*中断输出配置*/
	USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);			//开启串口接收数据的中断
	
	/*NVIC中断分组*/
	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);			//配置NVIC为分组2
	
	/*NVIC配置*/
	NVIC_InitTypeDef NVIC_InitStructure;					//定义结构体变量
	NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;		//选择配置NVIC的USART1线
	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;			//指定NVIC线路使能
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;		//指定NVIC线路的抢占优先级为1
	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;		//指定NVIC线路的响应优先级为1
	NVIC_Init(&NVIC_InitStructure);							//将结构体变量交给NVIC_Init,配置NVIC外设
	
	/*USART使能*/
	USART_Cmd(USART1, ENABLE);								//使能USART1,串口开始运行
}

/**
  * 函    数:串口发送一个字节
  * 参    数:Byte 要发送的一个字节
  * 返 回 值:无
  */
void Serial_SendByte(uint8_t Byte)
{
	USART_SendData(USART1, Byte);		//将字节数据写入数据寄存器,写入后USART自动生成时序波形
	while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);	//等待发送完成
	/*下次写入数据寄存器会自动清除发送完成标志位,故此循环后,无需清除标志位*/
}

/**
  * 函    数:串口发送一个数组
  * 参    数:Array 要发送数组的首地址
  * 参    数:Length 要发送数组的长度
  * 返 回 值:无
  */
void Serial_SendArray(uint8_t *Array, uint16_t Length)
{
	uint16_t i;
	for (i = 0; i < Length; i ++)		//遍历数组
	{
		Serial_SendByte(Array[i]);		//依次调用Serial_SendByte发送每个字节数据
	}
}

/**
  * 函    数:串口发送一个字符串
  * 参    数:String 要发送字符串的首地址
  * 返 回 值:无
  */
void Serial_SendString(char *String)
{
	uint8_t i;
	for (i = 0; String[i] != '\0'; i ++)//遍历字符数组(字符串),遇到字符串结束标志位后停止
	{
		Serial_SendByte(String[i]);		//依次调用Serial_SendByte发送每个字节数据
	}
}

/**
  * 函    数:次方函数(内部使用)
  * 返 回 值:返回值等于X的Y次方
  */
uint32_t Serial_Pow(uint32_t X, uint32_t Y)
{
	uint32_t Result = 1;	//设置结果初值为1
	while (Y --)			//执行Y次
	{
		Result *= X;		//将X累乘到结果
	}
	return Result;
}

/**
  * 函    数:串口发送数字
  * 参    数:Number 要发送的数字,范围:0~4294967295
  * 参    数:Length 要发送数字的长度,范围:0~10
  * 返 回 值:无
  */
void Serial_SendNumber(uint32_t Number, uint8_t Length)
{
	uint8_t i;
	for (i = 0; i < Length; i ++)		//根据数字长度遍历数字的每一位
	{
		Serial_SendByte(Number / Serial_Pow(10, Length - i - 1) % 10 + '0');	//依次调用Serial_SendByte发送每位数字
	}
}

/**
  * 函    数:使用printf需要重定向的底层函数
  * 参    数:保持原始格式即可,无需变动
  * 返 回 值:保持原始格式即可,无需变动
  */
int fputc(int ch, FILE *f)
{
	Serial_SendByte(ch);			//将printf的底层重定向到自己的发送字节函数
	return ch;
}

/**
  * 函    数:自己封装的prinf函数
  * 参    数:format 格式化字符串
  * 参    数:... 可变的参数列表
  * 返 回 值:无
  */
void Serial_Printf(char *format, ...)
{
	char String[100];				//定义字符数组
	va_list arg;					//定义可变参数列表数据类型的变量arg
	va_start(arg, format);			//从format开始,接收参数列表到arg变量
	vsprintf(String, format, arg);	//使用vsprintf打印格式化字符串和参数列表到字符数组中
	va_end(arg);					//结束变量arg
	Serial_SendString(String);		//串口发送字符数组(字符串)
}

/**
  * 函    数:USART1中断函数
  * 参    数:无
  * 返 回 值:无
  * 注意事项:此函数为中断函数,无需调用,中断触发后自动执行
  *           函数名为预留的指定名称,可以从启动文件复制
  *           请确保函数名正确,不能有任何差异,否则中断函数将不能进入
  */
void USART1_IRQHandler(void)
{
	static uint8_t RxState = 0;		//定义表示当前状态机状态的静态变量
	static uint8_t pRxPacket = 0;	//定义表示当前接收数据位置的静态变量
	if (USART_GetITStatus(USART1, USART_IT_RXNE) == SET)	//判断是否是USART1的接收事件触发的中断
	{
		uint8_t RxData = USART_ReceiveData(USART1);			//读取数据寄存器,存放在接收的数据变量
		
		/*使用状态机的思路,依次处理数据包的不同部分*/
		
		/*当前状态为0,接收数据包包头*/
		if (RxState == 0)
		{
			if (RxData == '@' && Serial_RxFlag == 0)		//如果数据确实是包头,并且上一个数据包已处理完毕
			{
				RxState = 1;			//置下一个状态
				pRxPacket = 0;			//数据包的位置归零
			}
		}
		/*当前状态为1,接收数据包数据,同时判断是否接收到了第一个包尾*/
		else if (RxState == 1)
		{
			if (RxData == '\r')			//如果收到第一个包尾
			{
				RxState = 2;			//置下一个状态
			}
			else						//接收到了正常的数据
			{
				Serial_RxPacket[pRxPacket] = RxData;		//将数据存入数据包数组的指定位置
				pRxPacket ++;			//数据包的位置自增
			}
		}
		/*当前状态为2,接收数据包第二个包尾*/
		else if (RxState == 2)
		{
			if (RxData == '\n')			//如果收到第二个包尾
			{
				RxState = 0;			//状态归0
				Serial_RxPacket[pRxPacket] = '\0';			//将收到的字符数据包添加一个字符串结束标志
				Serial_RxFlag = 1;		//接收数据包标志位置1,成功接收一个数据包
			}
		}
		
		USART_ClearITPendingBit(USART1, USART_IT_RXNE);		//清除标志位
	}
}

Serial.h

#ifndef __SERIAL_H
#define __SERIAL_H

#include <stdio.h>

extern char Serial_RxPacket[];
extern uint8_t Serial_RxFlag;

void Serial_Init(void);
void Serial_SendByte(uint8_t Byte);
void Serial_SendArray(uint8_t *Array, uint16_t Length);
void Serial_SendString(char *String);
void Serial_SendNumber(uint32_t Number, uint8_t Length);
void Serial_Printf(char *format, ...);

#endif

Main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Serial.h"
#include "LED.h"
#include "string.h"

int main(void)
{
	/*模块初始化*/
	OLED_Init();		//OLED初始化
	LED_Init();			//LED初始化
	Serial_Init();		//串口初始化
	
	/*显示静态字符串*/
	OLED_ShowString(1, 1, "TxPacket");
	OLED_ShowString(3, 1, "RxPacket");
	
	while (1)
	{
		if (Serial_RxFlag == 1)		//如果接收到数据包
		{
			OLED_ShowString(4, 1, "                ");
			OLED_ShowString(4, 1, Serial_RxPacket);				//OLED清除指定位置,并显示接收到的数据包
			
			/*将收到的数据包与预设的指令对比,以此决定将要执行的操作*/
			if (strcmp(Serial_RxPacket, "LED_ON") == 0)			//如果收到LED_ON指令
			{
				LED1_ON();										//点亮LED
				Serial_SendString("LED_ON_OK\r\n");				//串口回传一个字符串LED_ON_OK
				OLED_ShowString(2, 1, "                ");
				OLED_ShowString(2, 1, "LED_ON_OK");				//OLED清除指定位置,并显示LED_ON_OK
			}
			else if (strcmp(Serial_RxPacket, "LED_OFF") == 0)	//如果收到LED_OFF指令
			{
				LED1_OFF();										//熄灭LED
				Serial_SendString("LED_OFF_OK\r\n");			//串口回传一个字符串LED_OFF_OK
				OLED_ShowString(2, 1, "                ");
				OLED_ShowString(2, 1, "LED_OFF_OK");			//OLED清除指定位置,并显示LED_OFF_OK
			}
			else						//上述所有条件均不满足,即收到了未知指令
			{
				Serial_SendString("ERROR_COMMAND\r\n");			//串口回传一个字符串ERROR_COMMAND
				OLED_ShowString(2, 1, "                ");
				OLED_ShowString(2, 1, "ERROR_COMMAND");			//OLED清除指定位置,并显示ERROR_COMMAND
			}
			
			Serial_RxFlag = 0;			//处理完成后,需要将接收数据包标志位清零,否则将无法接收后续数据包
		}
	}
}

运行结果

这就是我们第二个程序的现象。

本节的内容到这里就结束了,下节继续。

QQ交流群:963138186

本篇就到这里,下篇继续!欢迎点击下方订阅本专栏↓↓↓

标签:NVIC,USART,---,InitStructure,串口,GPIO,Serial,数据包
From: https://blog.csdn.net/xiaobaivera/article/details/140160175

相关文章

  • 【往届会议论文已完成EI、SCOPUS检索】第四届电力系统与能源互联网国际学术会议(PoSEI
    第三届电力系统与能源互联网国际学术会议(PoSEI2023)由福州大学主办,将于2024年7月26日-28日在中国福州召开。能源互联网是将系统性思维和数字化技术与能源生产、传输、存储、消费以及能源市场深度融合的新型生态化能源系统,以可再生能源优先,以电力为基础,通过多能协同、供需......
  • 【中国工程院院士、IEEE Fellow等大咖云集】第六届复杂系统数据驱动优化国际会议(DOCS
    第六届复杂系统数据驱动优化国际会议(DOCS2024)将于2024年8月16-18日在中国杭州召开,组委会诚挚邀请与复杂系统数据驱动优化相关的广泛领域的研究人员、从业人员和学者踊跃投稿、积极参会交流。1.会议官方会议官网:www.ic-docs.org时间地点:2024年8月16-18日中国-......
  • 【双出版加持!录用率高!见刊、检索更稳定!】第六届结构抗震与土木工程研究国际学术会议 (I
    随着社会的发展,城市规模的不断扩大,建筑形态也趋于多样化和复杂化,建筑结构形式逐渐由规则简单向高层、大跨甚至特殊复杂的方向发展。而房屋建筑是人们正常生活和生产活动的基本场所,房屋建筑结构的安全必须得到充分保障。但是,自然灾害(地震、风、雪、雨)、人为失误和事故(爆炸、......
  • 用PyQt5打造炫酷界面:深入解析pyqt5-custom-widgets
    在PyQt5中,使用自定义小部件可以为应用程序增添更多实用性和时尚感。pyqt5-custom-widgets是一个开源项目,提供了一系列有用且时尚的自定义小部件,如开关按钮、动画按钮等。本文将详细介绍pyqt5-custom-widgets的安装和使用方法。安装可以使用PIP进行安装(根据你的平台,可能是......
  • Go语言--自定义函数
    定义格式函数构成代码执行的逻辑结构。在Go语言中,兩数的基本组成为:关键字func、函数名、参数列表、返回值、所数体和返回语句。函数定义说明:func:函数由关键字func开始声明FuncName:函数名称,根据约定,数名首字母小写即为private,大写即为public.参数列表:函数可以有0......
  • [分布式网络通讯框架]----MprpcController以及Logger类
    在calluserservice.cc中,使用UserServiceRpc_Stub类的时候,我们最终调用形式为:stub.Login(&controller,&request,&response,nullptr);注意到其中有一个controller对象,这个是由MprpcController类定义出来的对象,那么这个类的作用是什么呢?首先我们来看Login()的底层实现,传入......
  • Go语言--流程控制
    程序运行结构Go语言支持最基本的三种程序运行结构:顺序结构、选结构、环结构。顺序结构:程序按顺序执行,不发生跳转。选择结构:依据是否满足条件,有选择的执行相应功能循环结构:依据条件是否满足,环多次执行某段代码。选择ifs:="yes"ifs=="yes"{ fmt.Println("YE......
  • 功能强大的采样器软件Togu Audio Line TAL-Sampler 4.6.1
    ToguAudioLineTAL-Sampler是一个用于创建和播放模仿经典采样器声音的样本的程序。使用TAL采样器,您可以下载和编辑任何音频文件,应用各种效果和调制,设置合成和音序器参数等等。TAL采样器支持VST格式,适用于从XP到10的所有Windows版本。以下是东固音频线TAL采样器的一些功能:......
  • 阿基米德算法优化变分模态分解AOA-VMD数字信号去噪(优化K值 alpha值 )【含Matlab源码 48
    ......
  • 【社招+校招】华为OD机试 - 运维日志排序(Java & JS & Python & C)
    鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者、51CTO(Top红人+专家博主)、github开源爱好者(go-zero源码二次开发、游戏后端架构https://github.com/Peakchen)运维日志排序算法实现(Java、JavaScript、Python、C、C++)算法概述运维日志......