首页 > 其他分享 >[题解]AT_abc248_d [ABC248D] Range Count Query

[题解]AT_abc248_d [ABC248D] Range Count Query

时间:2024-06-22 11:00:41浏览次数:24  
标签:Count int 题解 哨兵 Range 查找 ABC248D

思路

其实很简单,我们可以将所有数值相同的值的下标存入一个 vector 里面。因为,我们既然要查找 \(X\),不妨把所有值为 \(X\) 的下标存在一起,方便查找。(可以在输入的时候完成)

我们不妨在每一个数值后面添加一个哨兵,然后二分查找第一个大于等于 \(l\) 的数和第一个大于等于 \(r + 1\) 的数,再把两数相减即为答案。

这时候,哨兵的作用就体现出来了,如果我们的第二个数取到了哨兵,那么说明 \(l \sim r\) 是在最后的,我们将它设为 \(\operatorname{size}(v_x) + 1\) 即可。

Code

#include <bits/stdc++.h>  
#define re register  
  
using namespace std;  
  
const int N = 2e5 + 10,inf = 1e6 + 10;  
int n,q,Max;  
vector<int> v[N];  
  
inline int read(){  
    int r = 0,w = 1;  
    char c = getchar();  
    while (c < '0' || c > '9'){  
        if (c == '-') w = -1;  
        c = getchar();  
    }  
    while (c >= '0' && c <= '9'){  
        r = (r << 3) + (r << 1) + (c ^ 48);  
        c = getchar();  
    }  
    return r * w;  
}  
  
int main(){  
    n = read();  
    for (re int i = 1;i <= n;i++){  
        int x;  
        x = read();  
        Max = max(Max,x);  
        v[x].push_back(i);  
    }  
    for (re int i = 1;i <= Max;i++) v[i].push_back(inf);//哨兵   
    q = read();  
    while (q--){  
        int l,r,x;  
        l = read();  
        r = read();  
        x = read();  
        int a = lower_bound(v[x].begin(),v[x].end(),l) - v[x].begin();//二分查找   
        int b = lower_bound(v[x].begin(),v[x].end(),r + 1) - v[x].begin();//这里貌似也可以用 upper_bound   
        if (b == inf) b = v[x].size() + 1;//取到哨兵   
        printf("%d\n",b - a);//输出结果   
    }  
    return 0;  
}  

标签:Count,int,题解,哨兵,Range,查找,ABC248D
From: https://www.cnblogs.com/WaterSun/p/18261971

相关文章

  • [题解]AT_abc253_g [ABC253G] Swap Many Times
    思路首先,不难看出一个规律,就是对于一个序列\(a\),如果它将操作所有以\(x\)为第一关键字的二元组,那么序列的\(a_{x\simn}\)将循环右移一位。(注意,在这里的\(x\)指的是在\(1\sim(n-1)\)中的任意一个定值)那么,我们就可以将编号分别为\(l\simr\)的这些二元组分为三......
  • [题解]AT_abc250_e [ABC250E] Prefix Equality
    思路对于这种题目,通常会想到用哈希维护。由于集合相同与\(a_{1\simx}\),\(b_{1\simy}\)的顺序无关,所以对于我们的哈希函数\(h(x)\)必定需要用一种有交换律的符号。首先想到的当然是加法,但是不太好实现,因为这些数太大了,不因会爆unsignedlonglong,还会爆__int128,所以不......
  • [题解]AT_abc256_g [ABC256G] Black and White Stones
    思路容易看出来是个DP题,但是你发现DP的起点是不好确定的,于是假定第一条边的起点是黑色。然后你发现设为白色的贡献与黑色是相同的,于是直接令第一条边的起点是黑色,最后答案乘以\(2\)即可。然后就可以愉快的DP了。首先枚举每条边白色点的数量\(k\),定义\(dp_{i,0/1}\)......
  • [题解]AT_abc225_f [ABC225F] String Cards
    思路Part1弱化版看到这道题的第一眼想到了P1012这道题。但是,这两道题选择的数量是有区别的。我们可以由拼数得出一个结论性的排序规则(这里就不多做解释了):inlineboolcmp(stringa,stringb){returna+b<b+a;}如果用这样的做法,有hack。Part2状态......
  • [题解]AT_abc255_d [ABC255D] ±1 Operation 2
    思路因为\(1\leqn,q\leq2\times10^5\),所以对于每一次查询的时间复杂度一定要达到\(\Theta(\logn)\),甚至于\(\Theta(1)\)。一个最简单的想法,我们先统计出整个序列\(a\)的和\(sum\),然后答案是\(|sum-x\timesn|\)。很显然,这个想法是错误的,因为对于\(a\)中只有......
  • [题解]AT_abc225_e [ABC225E] フ
    思路对于每一个7,我们都可以抽象为这样一个图形:如果有两个7,无论它是否有重合部分,红色部分是不需要判断的,只需要看绿色的部分。因此,我们的问题就简化为了三角形,而不是四边形。对于所有的7,都有一个公共顶点:\((0,0)\)点。所以,我们可以引出一个叫斜率的概念来判断这些三角形......
  • [题解]AT_abc225_d [ABC225D] Play Train
    题意给定\(N\)个小车,每个小车的编号分别为:\(1,2,\dots,N\)。现在有\(Q\)个操作,每个操作执行\(3\)种操作:1xy,将\(x\)和\(y\)相连。(\(y\)在\(x\)之后)2xy,将\(x\)和\(y\)的连接解除。3x,输出\(x\)所在链的长度,及其这条链中的所有元素。(从前往后)思路我......
  • [题解]AT_abc224_e [ABC224E] Integers on Grid
    比较符合CCF造数据水平的题。思路首先可以用两个vector<pair<int,int>>v[N]分别将每一行、每一列的元素的权值与编号存储下来。那么可以对所有的\(v_i\)按照权值从小到大排序。那么发现对于所有的满足v[i][p].fst<v[i][q].fst的\((p,q)\)都可以建一条从\(p\)指......
  • [题解]AT_abc222_f [ABC222F] Expensive Expense
    板子题,模拟赛场切了。思路线段树换根板子题。因为需要求每一个点的答案,所以定义\(dp_i\)表示以\(i\)为根的最长距离。考虑将一个点\(v\)转化为根,树的形态会发生什么变化(假设\(v\)的父亲节点是\(u\))。发现在\(v\)子树中的节点,距离都会减少\(w_{u\tov}\),其它节点......
  • [题解]AT_abc217_g [ABC217G] Groups
    思路定义\(dp_{i,j}\)表示将前\(i\)个数,正好分为\(j\)组的方案数。那么,我们对\(i\)号元素进行分类讨论:将\(i\)放入原本就存在的组中,因为在同一个组中不能存在两个数\(x,y\),使得\(x\bmodm=y\bmodm\)。所以对于\(i\),如果它是\(m\)的倍数,则在\(1\simi-......