首页 > 其他分享 >卷积神经网络-AlexNet

卷积神经网络-AlexNet

时间:2024-06-21 20:43:49浏览次数:23  
标签:kernel nn 卷积 self init ReLU 神经网络 128 AlexNet

AlexNet

一些前置知识

top-1 和top-5错误率

top-1错误率指的是在最后的n哥预测结果中,只有预测概率最大对应的类别是正确答案才算预测正确。
top-5错误率指的是在最后的n个预测结果中,只要预测概率最大的前五个中含有正确答案就算预测正确。

max-pooling层

最大池化又叫做subsampling,其主要作用是减少图像的高度和长度而深度(宽度)则不会改变。下面是一个列子:

fully-connect层

在全连接层中,其每个神经元都与前一层的所有神经元相连接,每个连接都有一个权重用于调节信息传递的强度,并且每个神经元还有一个偏置项。

1000-way softmax

它其实也属于全连接层,这个层原本包含1000个未归一化的输出,而softmax将这个向量转换为概率分布。计算方式如下:

\[P(y_i) = \frac{e^{z_i}}{\sum_{j = 1}^{1000}e^{z_j}} \]

non-saturating neurons

非饱和神经元是深度学习中一种设计神经元的理念,目的是避免神经元在训练过程中出现饱和现象。饱和现象会导致梯度消失,进而使得模型难以训练。下面是一些常见的非饱和激活函数:

  • ReLU
  • Leaky ReLU
  • ELU
  • SELU

dropout

在训练时以一定的概率将输入置0,输出时接受所有神经元的输出,但要乘以概率(1-p)。使得模型在每次前向和反向传播时都使用不同的子网络进行训练,从而提高模型的泛化能力。这种方法有效地减少了神经元之间的共适应性(co-adaptation),迫使网络的每个神经元在更具鲁棒性的特征上进行学习。

缺点:收敛速度可能变慢。

网络结构


由于这篇文章在提出时没有很好的GPU,估计显存不够?所有采用了双GPU训练的方法。具体来说上下两块GPU分别负责一般的参数,但是这其中也有信息的融合,比如第3、6,7层。其次这里输出的图像维度应该有误,应更正为2252253

算法实现

import torch.nn as nn
import torch

class AlexNet(nn.Module):
    def __init__(self, num_classes=1000, init_weights=False):
        super(AlexNet, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 48, kernel_size=11, stride=4, padding=2),  # input[3, 224, 224]  output[48, 55, 55]
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),                  # output[48, 27, 27]
            nn.Conv2d(48, 128, kernel_size=5, padding=2),           # output[128, 27, 27]
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),                  # output[128, 13, 13]
            nn.Conv2d(128, 192, kernel_size=3, padding=1),          # output[192, 13, 13]
            nn.ReLU(inplace=True),
            nn.Conv2d(192, 192, kernel_size=3, padding=1),          # output[192, 13, 13]
            nn.ReLU(inplace=True),
            nn.Conv2d(192, 128, kernel_size=3, padding=1),          # output[128, 13, 13]
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),                  # output[128, 6, 6]
        )
        self.classifier = nn.Sequential(
            nn.Dropout(p=0.5),
            nn.Linear(128 * 6 * 6, 2048),
            nn.ReLU(inplace=True),
            nn.Dropout(p=0.5),
            nn.Linear(2048, 2048),
            nn.ReLU(inplace=True),
            nn.Linear(2048, num_classes),
        )
        if init_weights:
            self._initialize_weights()

    def forward(self, x):
        x = self.features(x)
        x = torch.flatten(x, start_dim=1)
        x = self.classifier(x)
        return x

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)

标签:kernel,nn,卷积,self,init,ReLU,神经网络,128,AlexNet
From: https://www.cnblogs.com/hywang1211/p/18250421

相关文章

  • cv知识点(卷积和池化)
    一、卷积的基本属性1.卷积核(Kernel):卷积操作的感受野,直观理解就是一个滤波矩阵,普遍使用的卷积核大小为3×3、5×5等;2.步长(Stride):卷积核遍历特征图时每步移动的像素,如步长为1则每次移动1个像素,步长为2则每次移动2个像素(即跳过1个像素),以此类推;3.填充(Padding):处理特征图边界的方......
  • 神经网络与模式识别课程报告-卷积神经网络(CNN)算法的应用
     =======================================================================================完整的神经网络与模式识别课程报告文档下载:https://wenku.baidu.com/view/393fbc7853e2524de518964bcf84b9d528ea2c92?aggId=393fbc7853e2524de518964bcf84b9d528ea2c92&fr=catalogM......
  • 基本循环神经网络(RNN)
    RNN背景:RNN与FNN在前馈神经网络中,信息的传递是单向的,这种限制虽然使得网络变得更容易学习,但在一定程度上也减弱了神经网络模型的能力。在生物神经网络中,神经元之间的连接关系要复杂的多。前馈神经网络可以看着是一个复杂的函数,每次输入都是独立的,即网络的输出只依赖于当前的......
  • 基于卷积神经网络的图像风格迁移研究(论文)
    目录1绪论11.1研究背景11.2研究目的和意义11.2.1研究的应用价值11.2.2研究的前沿性和学术性31.3研究内容51.3.1风格建模51.3.2图像重建51.4研究现状和挑战61.4.1评估方法61.4.2理论支撑61.4.3风格迁移的三向权衡71.5前人研究工作7......
  • 【YOLOv8改进】CAFM(Convolution and Attention Fusion Module):卷积和注意力融合模块
    摘要摘要——高光谱图像(HSI)去噪对于高光谱数据的有效分析和解释至关重要。然而,同时建模全局和局部特征以增强HSI去噪的研究却很少。在本文中,我们提出了一种混合卷积和注意力网络(HCANet),该网络结合了卷积神经网络(CNN)和Transformers的优势。为了增强全局和局部特征的建模,我们设计了......
  • 基于语音信号MFCC特征提取和GRNN神经网络的人员身份检测算法matlab仿真
    1.算法运行效果图预览    2.算法运行软件版本MATLAB2022a 3.部分核心程序P=[Dat1_wav1;Dat1_wav2;Dat2_wav1;Dat2_wav2;Dat3_wav1;Dat3_wav2;Dat4_wav1;Dat4_wav2];T=[ones(800,1);2*ones(800,1);3*ones(800,1);4*ones(800,1)];%GRNN训练net=newgrnn(......
  • 基于python-CNN卷积神经网络的鱼类识别-含数据集+pyqt界面
    代码下载地址:https://download.csdn.net/download/qq_34904125/89434763本代码是基于pythonpytorch环境安装的。下载本代码后,有个requirement.txt文本,里面介绍了如何安装环境,环境需要自行配置。或可直接参考下面博文进行环境安装。深度学习环境安装教程-anaconda-python-......
  • MATLAB神经网络工具箱使用介绍
      本文介绍MATLAB软件中神经网络拟合(NeuralNetFitting)工具箱的具体使用方法。  在MATLAB人工神经网络ANN代码这篇文章中,我们介绍了MATLAB软件中神经网络(ANN)的纯代码实现;而在MATLAB软件中,其实基于神经网络拟合工具箱,就可以点点鼠标实现神经网络的回归。本文就对基于这一工具......
  • 数字信号处理作业 序列的卷积 实现 + MATLAB 源码
    实现有限长序列的基本运算(包括:加法、乘法、累加、移位、翻褶、抽取、插值、卷积和),并以GUI的形式将这些运算整合起来,使用者可通过向GUI输入任意有限长序列得到对应的运算结果。加法:对两个序列中对应位置的元素进行相加,得到一个新的序列,要求两个序列的长度......
  • 43、基于神经网络拟合函数的体脂估计(matlab)
    1、神经网络拟合函数的原理及流程神经网络拟合函数是一种基于人工神经元之间相互连接的模型,用来拟合复杂的非线性函数关系。其原理是通过多层次的神经元网络,每一层神经元通过激活函数将输入信号加权求和后输出,经过多次迭代优化权值,使得网络输出与实际值误差最小化。流程如下:......