文章目录
前言
介绍卷积神经网络的基本概念及具体实例
一、说明
1.如果一个网络由线性形式串联起来,那么就是一个全连接的网络。
2.全连接会丧失图像的一些空间信息,因为是按照一维结构保存。CNN是按照图像原始结构进行保存数据,不会丧失,可以保留原始空间信息。
3.图像卷积后仍是一个三维张量。
4.subsampling(下采样)后通道数不变,但是图像的高度和宽度变,减少数据数量,降低运算需求。
5.卷积运算示意图
6.padding参数:在输入外面再套圈,用0填充。
7.stride参数:做卷积操作时的步长。
8.下采样通常采用最大池化层,通道数量不变,图像宽和高改变。
二、具体实例
1.程序说明
输入尺寸为1*28*28,经过10个1*5*5的卷积操作变为10*24*24;经过2*2的最大池化变为10*12*12;经过20个10*5*5的卷积操作变为20*8*8;经过2*2的最大池化变为20*4*4;变为一维320个向量,再经过全连接层变为10个向量。
2.代码示例
代码如下(示例):
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
import pickle
# prepare dataset
# design model using class
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
self.pooling = torch.nn.MaxPool2d(2)
self.fc = torch.nn.Linear(320, 10)
def forward(self, x):
# flatten data from (n,1,28,28) to (n, 784)
batch_size = x.size(0)
x = F.relu(self.pooling(self.conv1(x)))
x = F.relu(self.pooling(self.conv2(x)))
x = x.view(batch_size, -1) # -1 此处自动算出的是320
x = self.fc(x)
return x
# training cycle forward, backward, update
def train(epoch):
running_loss = 0.0
loss_s = 0.0
for batch_idx, data in enumerate(train_loader, 0):
inputs, target = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, target)
loss.backward()
optimizer.step()
running_loss += loss.item()
loss_s += loss.item()
if batch_idx % 300 == 299:
print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
running_loss = 0.0
return loss_s / len(train_loader)
def test():
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
outputs = model(images)
_, predicted = torch.max(outputs.data, dim=1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('accuracy on test set: %d %% ' % (100 * correct / total))
return 100 * correct / total
if __name__ == '__main__':
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
model = Net()
# construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
epoch_list = []
loss_list = []
accuracy_list = []
for epoch in range(10):
epoch_list.append(epoch)
loss_lis=train(epoch)
loss_list.append(loss_lis)
tes=test()
accuracy_list.append(tes)
with open('9/epoch_list.pkl', 'wb') as f:
pickle.dump(epoch_list, f)
with open('9/loss_list.pkl', 'wb') as f:
pickle.dump(loss_list, f)
with open('9/accuracy_list.pkl', 'wb') as f:
pickle.dump(accuracy_list, f)
画图程序如下:
import pickle
import matplotlib.pyplot as plt
with open('9/epoch_list.pkl', 'rb') as f:
loaded_epoch_list = pickle.load(f)
with open('9/loss_list.pkl', 'rb') as f:
loaded_loss_list = pickle.load(f)
with open('9/accuracy_list.pkl', 'rb') as f:
loaded_acc_list = pickle.load(f)
plt.subplot(2, 1, 1) # 创建子图,2行1列,第1个子图
plt.plot(loaded_epoch_list, loaded_loss_list)
plt.xlabel('epoch')
plt.ylabel('loss 1')
plt.subplot(2, 1, 2) # 创建子图,2行1列,第2个子图
plt.plot(loaded_epoch_list, loaded_acc_list,'r')
plt.xlabel('epoch')
plt.ylabel('acc 1')
plt.show()
得到如下结果:
利用GPU运行的程序如下:
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
import pickle
import time
# prepare dataset
# design model using class
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
self.pooling = torch.nn.MaxPool2d(2)
self.fc = torch.nn.Linear(320, 10)
def forward(self, x):
# flatten data from (n,1,28,28) to (n, 784)
batch_size = x.size(0)
x = F.relu(self.pooling(self.conv1(x)))
x = F.relu(self.pooling(self.conv2(x)))
x = x.view(batch_size, -1) # -1 此处自动算出的是320
x = self.fc(x)
return x
# training cycle forward, backward, update
def train(epoch):
running_loss = 0.0
loss_s = 0.0
for batch_idx, data in enumerate(train_loader, 0):
inputs, target = data
inputs, target = inputs.to(device), target.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, target)
loss.backward()
optimizer.step()
running_loss += loss.item()
loss_s += loss.item()
if batch_idx % 300 == 299:
print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
running_loss = 0.0
return loss_s / len(train_loader)
def test():
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, dim=1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('accuracy on test set: %d %% ' % (100 * correct / total))
return 100 * correct / total
if __name__ == '__main__':
start_time = time.time()
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
model = Net()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
epoch_list = []
loss_list = []
accuracy_list = []
for epoch in range(10):
epoch_list.append(epoch)
loss_lis=train(epoch)
loss_list.append(loss_lis)
tes=test()
accuracy_list.append(tes)
with open('9/epoch_list.pkl', 'wb') as f:
pickle.dump(epoch_list, f)
with open('9/loss_list.pkl', 'wb') as f:
pickle.dump(loss_list, f)
with open('9/accuracy_list.pkl', 'wb') as f:
pickle.dump(accuracy_list, f)
end_time = time.time()
print('training time: %.2f s' % (end_time - start_time))
得到如下结果:
总结
PyTorch学习9:卷积神经网络
标签:loss,卷积,self,torch,list,神经网络,epoch,PyTorch,size From: https://blog.csdn.net/qq_59940419/article/details/139514740