首页 > 其他分享 >实验6:开源控制器实践——RYU

实验6:开源控制器实践——RYU

时间:2022-10-18 23:25:59浏览次数:34  
标签:控制器 self parser datapath msg 开源 ofproto RYU port

一、实验目的

能够独立部署RYU控制器;
能够理解RYU控制器实现软件定义的集线器原理;
能够理解RYU控制器实现软件定义的交换机原理。

二、实验环境

Ubuntu 20.04 Desktop amd64

三、实验要求

(一)基本要求

搭建下图所示SDN拓扑,协议使用Open Flow 1.0,并连接Ryu控制器,通过Ryu的图形界面查看网络拓扑。

阅读Ryu文档的The First Application一节,运行当中的L2Switch,h1 ping h2或h3,在目标主机使用 tcpdump 验证L2Switch,分析L2Switch和POX的Hub模块有何不同。

from ryu.base import app_manager
from ryu.controller import ofp_event
from ryu.controller.handler import MAIN_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.ofproto import ofproto_v1_0
class L2Switch(app_manager.RyuApp):
    OFP_VERSIONS = [ofproto_v1_0.OFP_VERSION]
    def __init__(self, *args, **kwargs):
        super(L2Switch, self).__init__(*args, **kwargs)
    @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
    def packet_in_handler(self, ev):
        msg = ev.msg
        dp = msg.datapath
        ofp = dp.ofproto
        ofp_parser = dp.ofproto_parser
        actions = [ofp_parser.OFPActionOutput(ofp.OFPP_FLOOD)]
        data = None
        if msg.buffer_id == ofp.OFP_NO_BUFFER:
             data = msg.data
        out = ofp_parser.OFPPacketOut(
            datapath=dp, buffer_id=msg.buffer_id, in_port=msg.in_port,
            actions=actions, data = data)
        dp.send_msg(out)

h1 ping h2

h1 ping h3

分析L2Switch和POX的Hub模块有何不同

虽然RYU的L2Switch模块和POX的Hub模块都是洪泛转发。但pox的Hub模块是下发流表到交换机,然后交换机直接根据流表进行洪泛转发,ryu的L2Switch模块运行时不下发对应的转发流表,而是将包发送给控制器,由控制器利用packet-out指定为洪泛转发。

编程修改L2Switch.py,另存为L2xxxxxxxxx.py,使之和POX的Hub模块的变得一致?(xxxxxxxxx为学号)

from ryu.base import app_manager
from ryu.ofproto import ofproto_v1_3
from ryu.controller import ofp_event
from ryu.controller.handler import MAIN_DISPATCHER, CONFIG_DISPATCHER
from ryu.controller.handler import set_ev_cls
class hub(app_manager.RyuApp):
    OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]
 
    def __init__(self, *args, **kwargs):
        super(hub, self).__init__(*args, **kwargs)
 
    @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
    def switch_feathers_handler(self, ev):
        datapath = ev.msg.datapath
        ofproto = datapath.ofproto
        ofp_parser = datapath.ofproto_parser
 
        # install flow table-miss flow entry
        match = ofp_parser.OFPMatch()
        actions = [ofp_parser.OFPActionOutput(ofproto.OFPP_CONTROLLER, ofproto.OFPCML_NO_BUFFER)]
        # 1\OUTPUT PORT, 2\BUFF IN SWITCH?
        self.add_flow(datapath, 0, match, actions)
 
    def add_flow(self, datapath, priority, match, actions):
        # 1\ datapath for the switch, 2\priority for flow entry, 3\match field, 4\action for packet
        ofproto = datapath.ofproto
        ofp_parser = datapath.ofproto_parser
        # install flow
        inst = [ofp_parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, actions)]
        mod = ofp_parser.OFPFlowMod(datapath=datapath, priority=priority, match=match, instructions=inst)
        datapath.send_msg(mod)
 
    @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
    def packet_in_handler(self, ev):
        msg = ev.msg
        datapath = msg.datapath
        ofproto = datapath.ofproto
        ofp_parser = datapath.ofproto_parser
        in_port = msg.match['in_port']  # get in port of the packet
 
        # add a flow entry for the packet
        match = ofp_parser.OFPMatch()
        actions = [ofp_parser.OFPActionOutput(ofproto.OFPP_FLOOD)]
        self.add_flow(datapath, 1, match, actions)
 
        # to output the current packet. for install rules only output later packets
        out = ofp_parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id, in_port=in_port, actions=actions)
        # buffer id: locate the buffered packet
        datapath.send_msg(out)

查看流表

(二)进阶要求

阅读Ryu关于simple_switch.py和simple_switch_1x.py的实现,以simple_switch_13.py为例,完成其代码的注释工作,并回答下列问题:

注释:

# Copyright (C) 2011 Nippon Telegraph and Telephone Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from ryu.base import app_manager
from ryu.controller import ofp_event
from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.ofproto import ofproto_v1_3
from ryu.lib.packet import packet
from ryu.lib.packet import ethernet
from ryu.lib.packet import ether_types


class SimpleSwitch13(app_manager.RyuApp):
   OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]	 # OpenFlow1.3版本

   def __init__(self, *args, **kwargs):
       super(SimpleSwitch13, self).__init__(*args, **kwargs)
       self.mac_to_port = {}	# 保存(交换机id, mac地址)到转发端口的字典

   # 处理SwitchFeatures事件
   @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
   def switch_features_handler(self, ev):
       datapath = ev.msg.datapath	# 存储交换机的信息
       ofproto = datapath.ofproto
       parser = datapath.ofproto_parser

       # install table-miss flow entry
       #
       # We specify NO BUFFER to max_len of the output action due to
       # OVS bug. At this moment, if we specify a lesser number, e.g.,
       # 128, OVS will send Packet-In with invalid buffer_id and
       # truncated packet data. In that case, we cannot output packets
       # correctly.  The bug has been fixed in OVS v2.1.0.
       match = parser.OFPMatch()	# match指流表项匹配,这里OFPMatch()指不匹配任何信息
       actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,
                                         ofproto.OFPCML_NO_BUFFER)]	# actions是动作,表示匹配成功不缓存数据包并发送给控制器
       self.add_flow(datapath, 0, match, actions)	# add_flow是添加流表项的函数,我们可以从add_flow的函数中看到其调用了send_msg(mod),因此本函数的目的即为下发流表。

   # 增加流表项
   def add_flow(self, datapath, priority, match, actions, buffer_id=None):
       ofproto = datapath.ofproto
       parser = datapath.ofproto_parser

       inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,
                                            actions)]
       if buffer_id:
           mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id,
                                   priority=priority, match=match,
                                   instructions=inst)
       else:
           mod = parser.OFPFlowMod(datapath=datapath, priority=priority,
                                   match=match, instructions=inst)
       datapath.send_msg(mod)
       
       
   # 说明控制器在MAIN_DISPATCHER状态并且触发Packet_In事件时调用_packet_in_handler函数
   @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
   def _packet_in_handler(self, ev):
       # If you hit this you might want to increase
       # the "miss_send_length" of your switch
       if ev.msg.msg_len < ev.msg.total_len:	# 传输出错,打印debug信息
           self.logger.debug("packet truncated: only %s of %s bytes",
                             ev.msg.msg_len, ev.msg.total_len)
       msg = ev.msg
       datapath = msg.datapath
       ofproto = datapath.ofproto
       parser = datapath.ofproto_parser
       in_port = msg.match['in_port']

       pkt = packet.Packet(msg.data)
       eth = pkt.get_protocols(ethernet.ethernet)[0]

       if eth.ethertype == ether_types.ETH_TYPE_LLDP:
           # ignore lldp packet
           return
       dst = eth.dst	# 目的端口
       src = eth.src	# 源端口

       dpid = format(datapath.id, "d").zfill(16)
       self.mac_to_port.setdefault(dpid, {})

       self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port)

       # learn a mac address to avoid FLOOD next time.
       self.mac_to_port[dpid][src] = in_port		# 交换机自学习,取来往数据包的交换机id、源mac和入端口绑定来构造表。

   # 查看是否已经学习过该目的mac地址
       if dst in self.mac_to_port[dpid]:	# 若在表中找到出端口信息,指示出端口
           out_port = self.mac_to_port[dpid][dst]
       # 否则,洪泛    
       else:
           out_port = ofproto.OFPP_FLOOD

       actions = [parser.OFPActionOutput(out_port)]

       # install a flow to avoid packet_in next time
       if out_port != ofproto.OFPP_FLOOD:
           match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src)
           # verify if we have a valid buffer_id, if yes avoid to send both
           # flow_mod & packet_out
           if msg.buffer_id != ofproto.OFP_NO_BUFFER:	# 有buffer_id,带上buffer_id,然后只发送Flow_mod报文,因为交换机已经有缓存数据包,就不需要发送packet_out报文
               self.add_flow(datapath, 1, match, actions, msg.buffer_id)
               return
           else:
               self.add_flow(datapath, 1, match, actions)	# 若没有buffer_id,发送的Flow_Mod报文就无需要带上buffer_id,但是下一步要再发送一个Packet_out报文带上原数据包信息。
       data = None
       if msg.buffer_id == ofproto.OFP_NO_BUFFER:
           data = msg.data

   	# 发送Packet_out数据包 带上交换机发来的数据包的信息
       out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,
                                 in_port=in_port, actions=actions, data=data)

       # 发送流表
       datapath.send_msg(out)


问题:

a) 代码当中的mac_to_port的作用是什么?

保存mac地址到交换机端口的映射。

b) simple_switch和simple_switch_13在dpid的输出上有何不同?

simple_switch直接输出dpid,simple_switch_13会在不满16位的dpid前补0直到满16位

c) 相比simple_switch,simple_switch_13增加的switch_feature_handler实现了什么功能?

switch_features_handler函数是新增缺失流表项到流表中,当封包没有匹配到流表时,就触发packet_in

d) simple_switch_13是如何实现流规则下发的?

在接收到packetin事件后,首先获取包学习,交换机信息,以太网信息,协议信息等。如果以太网类型是LLDP类型,则不予处理。如果不是,则获取源端口、目的端口、交换机id,先学习源地址对应的交换机的入端口,再查看是否已经学习目的mac地址,如果没有就洪泛转发。如果学习过该mac地址,则查看是否有buffer_id,如果有则在添加流动作时加上buffer_id,向交换机发送数据包和流表。

e) switch_features_handler和_packet_in_handler两个事件在发送流规则的优先级上有何不同?

switch_features_handler下发流表的优先级高

编程实现和ODL实验的一样的硬超时功能

from ryu.base import app_manager
from ryu.controller import ofp_event
from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.ofproto import ofproto_v1_3
from ryu.lib.packet import packet
from ryu.lib.packet import ethernet
from ryu.lib.packet import ether_types


class SimpleSwitch13(app_manager.RyuApp):
    OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]

    def __init__(self, *args, **kwargs):
        super(SimpleSwitch13, self).__init__(*args, **kwargs)
        self.mac_to_port = {}

    @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
    def switch_features_handler(self, ev):
        datapath = ev.msg.datapath
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser

        # install table-miss flow entry
        #
        # We specify NO BUFFER to max_len of the output action due to
        # OVS bug. At this moment, if we specify a lesser number, e.g.,
        # 128, OVS will send Packet-In with invalid buffer_id and
        # truncated packet data. In that case, we cannot output packets
        # correctly.  The bug has been fixed in OVS v2.1.0.
        match = parser.OFPMatch()
        actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,
                                          ofproto.OFPCML_NO_BUFFER)]
        self.add_flow(datapath, 0, match, actions)

    def add_flow(self, datapath, priority, match, actions, buffer_id=None, hard_timeout=0):
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser

        inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,
                                             actions)]
        if buffer_id:
            mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id,
                                    priority=priority, match=match,
                                    instructions=inst, hard_timeout=hard_timeout)
        else:
            mod = parser.OFPFlowMod(datapath=datapath, priority=priority,
                                    match=match, instructions=inst, hard_timeout=hard_timeout)
        datapath.send_msg(mod)

    @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
    def _packet_in_handler(self, ev):
        # If you hit this you might want to increase
        # the "miss_send_length" of your switch
        if ev.msg.msg_len < ev.msg.total_len:
            self.logger.debug("packet truncated: only %s of %s bytes",
                              ev.msg.msg_len, ev.msg.total_len)
        msg = ev.msg
        datapath = msg.datapath
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser
        in_port = msg.match['in_port']

        pkt = packet.Packet(msg.data)
        eth = pkt.get_protocols(ethernet.ethernet)[0]

        if eth.ethertype == ether_types.ETH_TYPE_LLDP:
            # ignore lldp packet
            return
        dst = eth.dst
        src = eth.src

        dpid = format(datapath.id, "d").zfill(16)
        self.mac_to_port.setdefault(dpid, {})

        self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port)

        # learn a mac address to avoid FLOOD next time.
        self.mac_to_port[dpid][src] = in_port

        if dst in self.mac_to_port[dpid]:
            out_port = self.mac_to_port[dpid][dst]
        else:
            out_port = ofproto.OFPP_FLOOD

        actions = [parser.OFPActionOutput(out_port)]\

        actions_timeout=[]

        # install a flow to avoid packet_in next time
        if out_port != ofproto.OFPP_FLOOD:
            match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src)
            # verify if we have a valid buffer_id, if yes avoid to send both
            # flow_mod & packet_out
            hard_timeout=10
            if msg.buffer_id != ofproto.OFP_NO_BUFFER:
                self.add_flow(datapath, 2, match,actions_timeout, msg.buffer_id,hard_timeout=10)
                self.add_flow(datapath, 1, match, actions, msg.buffer_id)
                return
            else:
                self.add_flow(datapath, 2, match, actions_timeout, hard_timeout=10)
                self.add_flow(datapath, 1, match, actions)
        data = None
        if msg.buffer_id == ofproto.OFP_NO_BUFFER:
            data = msg.data

        out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,
                                  in_port=in_port, actions=actions, data=data)
        datapath.send_msg(out)

(三)心得体会

通过本次实验,了解到了ryu控制器的使用,学习了通过自定义python脚本来下发流表实现相应功能,认识到了和pox模块的异同。

标签:控制器,self,parser,datapath,msg,开源,ofproto,RYU,port
From: https://www.cnblogs.com/xcua/p/16804574.html

相关文章

  • 实验5:开源控制器实践——POX
    生成拓扑:点击查看代码sudomn--topo=single,3--mac--controller=remote,ip=127.0.0.1,port=6633--switchovsk,protocols=OpenFlow10阅读Hub模块代码,使用tcpdu......
  • 实验5:开源控制器实践——POX
    (一)基本要求h1pingh2、h2和h3的tcpdump抓包结果使用tcpdump验证Hub模块使用tcpdump验证Switch模块L2_learning模块代码流程图(二)进阶要求重新搭建(一......
  • 实验5:开源控制器实践——POX
    实验5:开源控制器实践——POX一、实验目的1.能够理解POX控制器的工作原理;2.通过验证POX的forwarding.hub和forwarding.l2_learning模块,初步掌握POX控制器的使用方法;3.能......
  • 大事!!Elasticsearch 和 Kibana 换开源协议了......
      Elastic社区的一大事件,必须以官方文档公布为准:​​https://www.elastic.co/cn/blog/licensing-change​​核心点翻译梳理如下:1、作者是:ShayBanon,ElasticCEO。标题......
  • 实验5:开源控制器实践——POX
    实验5:开源控制器实践——POX一、实验目的能够理解POX控制器的工作原理;通过验证POX的forwarding.hub和forwarding.l2_learning模块,初步掌握POX控制器的使用方法;能够......
  • 实验6:开源控制器实践——RYU
    一、实验要求1.搭建下图所示SDN拓扑,协议使用OpenFlow1.0,并连接Ryu控制器。建立拓扑连接Ryu控制器通过Ryu的图形界面查看网络拓扑在本机浏览器中输入地址http://......
  • 实验6:开源控制器实践——RYU
    一、实验目的1.能够独立部署RYU控制器2.能够理解RYU控制器实现软件定义的集线器原理3.能够理解RYU控制器实现软件定义的交换机原理二、实验环境Ubuntu20.04Desktop......
  • 【模糊神经网络】基于simulink的模糊神经网络控制器设计
    1.软件版本版本:MATLAB2010b2.模糊神经网络理论概述由于模糊控制是建立在专家经验的基础之上的,但这有很大的局限性,而人工神经网络可以充分逼近任意复杂的时变非线性系统,......
  • CVPR21小样本检测:蒸馏&上下文助力小样本检测(代码已开源)
    计算机视觉研究院专栏作者:Edison_G目标检测现在的框架越来越多,我们“计算机视觉研究院”最近也分享了众多的目标检测框架!今天我们继续分享一个最新的检测框架——DCNet。论......
  • 实验5:开源控制器实践——POX
    实验5:开源控制器实践——POX一、实验目的能够理解POX控制器的工作原理;通过验证POX的forwarding.hub和forwarding.l2_learning模块,初步掌握POX控制器的使用方法;能够......