首页 > 其他分享 >【模糊神经网络】基于simulink的模糊神经网络控制器设计

【模糊神经网络】基于simulink的模糊神经网络控制器设计

时间:2022-10-18 17:35:59浏览次数:88  
标签:simulink end rules signal 模糊 Number 神经网络 NumRules Fuzzy

1.软件版本

版本:MATLAB2010b

2.模糊神经网络理论概述

由于模糊控制是建立在专家经验的基础之上的,但这有很大的局限性,而人工神经网络可以充分逼近任意复杂的时变非线性系统,采用并行分布处理方法,可学习和自适应不确定系统。利用神经网络可以帮助模糊控制器进行学习,模糊逻辑可以帮助神经网络初始化及加快学习过程。通常神经网络的基本构架如下所示:

 

整个神经网络结构为五层,其中第一层为“输入层“,第二层为“模糊化层”,第三层为“模糊推理层”,第四层为“归一化层”,第五层为“解模糊输出层”。

   第一层为输入层,其主要包括两个节点,所以第一层神经网络的输入输出可以用如下的式子表示:

 

  第二层为输入变量的语言变量值,通常是模糊集中的n个变量,它的作用是计算各输入分量属于各语言变量值模糊集合的隶属度。用来确定输入在不同的模糊语言值对应的隶属度,以便进行模糊推理,如果隶属函数为高斯函数,那么其表达式为:

 

其中变量的具体含义和第一层节点的变量含义相同。

第三层是比较关键的一层,即模糊推理层,这一层的每个节点代表一条模糊规则,其每个节点的输出值表示每条模糊规则的激励强度。该节点的表达式可用如下的式子表示:

 

第四层为归一化层,其输出是采用了Madmdani模糊规则,该层的表达式为:

 

 

 第五层是模糊神经网络的解模糊层,即模糊神经网络的清晰化. 

3.算法的simulink建模

为了对比加入FNN控制器后的性能变化,我们同时要对有FNN控制器的模型以及没有FNN控制器的模型进行仿真,仿真结果如下所示:

 非FNN控制器的结构:

 

其仿真结果如下所示:

 

 

 FNN控制器的结构:

 

 前面的是训练阶段,后面的为实际的输出,为了能够体现最后的性能,我们将两个模型的最后输出进行对比,得到的对比结果所示:

 

从上面的仿真结果可知,PID的输出值范围降低了很多,性能得到了进一步提升。

调速TS模型,该模型最后的仿真结果如下所示:

 

从上面的仿真结果可知,采用FNN控制器后,其PID的输出在一个非常小的范围之内进行晃动,整个系统的性能提高了80%。这说明采用模糊神经网络后的系统具有更高的性能和稳定性。

4.部分程序

Mamdani模糊控制器的S函数

function [out,Xt,str,ts] = Sfunc_fnn_Mamdani(t,Xt,u,flag,Learn_rate,coff,lamda,Number_signal_in,Number_Fuzzy_rules,x0,T_samples)

%输入定义

% t,Xt,u,flag :S函数固定的几个输入脚

% Learn_rate :学习度
% coff :用于神经网络第一层的参数调整
% lamda :神经网络的学习遗忘因子
% Number_signal_in :输入的信号的个数
% Number_Fuzzy_rules :模糊控制规则数
% T_samples :模块采样率

%输入信号的个数
Number_inport = Number_signal_in;
%整个系统的输入x,误差输入e,以及训练指令的数组的长度
ninps = Number_inport+1+1;
NumRules = Number_Fuzzy_rules;
Num_out1 = 3*Number_signal_in*Number_Fuzzy_rules + ((Number_signal_in+1)*NumRules)^2 + (Number_signal_in+1)*NumRules;
Num_out2 = 3*Number_signal_in*Number_Fuzzy_rules + (Number_signal_in+1)*NumRules;

%S函数第一步,参数的初始化
if flag == 0
out = [0,Num_out1+Num_out2,1+Num_out1+Num_out2,ninps,0,1,1];
str = [];
ts = T_samples;
Xt = x0;



%S函数的第二步,状态的计算
elseif flag == 2
%外部模块的输出三个参数变量输入x,误差输入e,以及训练指令的数组的长度
x = u(1:Number_inport);%输入x
e = u(Number_inport+1:Number_inport+1);%误差输入e
learning = u(Number_inport+1+1);%训练指令的数组的长度

%1的时候为正常工作状态
if learning == 1
Feedfor_phase2;

%下面定义在正常的工作状态中,各个网络层的工作
%层1:
In1 = x*ones(1,Number_Fuzzy_rules);
Out1 = 1./(1 + (abs((In1-mean1)./sigma1)).^(2*b1));
%层2:
precond = Out1';
Out2 = prod(Out1)';
S_2 = sum(Out2);
%层3:
if S_2~=0
Out3 = Out2'./S_2;
else
Out3 = zeros(1,NumRules);
end
%层4:
Aux1 = [x; 1]*Out3;
%训练数据
a = reshape(Aux1,(Number_signal_in+1)*NumRules,1);

%参数学习
P = (1./lamda).*(P - P*a*a'*P./(lamda+a'*P*a));
ThetaL4 = ThetaL4 + P*a.*e;
ThetaL4_mat = reshape(ThetaL4,Number_signal_in+1,NumRules);

%错误反馈
e3 = [x' 1]*ThetaL4_mat.*e;
denom = S_2*S_2;

%下面自适应产生10个规则的模糊控制器
Theta32 = zeros(NumRules,NumRules);
if denom~=0
for k1=1:NumRules
for k2=1:NumRules
if k1==k2
Theta32(k1,k2) = ((S_2-Out2(k2))./denom).*e3(k2);
else
Theta32(k1,k2) = -(Out2(k2)./denom).*e3(k2);
end
end
end
end

e2 = sum(Theta32,2);

%层一
Q = zeros(Number_signal_in,Number_Fuzzy_rules,NumRules);
for i=1:Number_signal_in
for j=1:Number_Fuzzy_rules
for k=1:NumRules
if Out1(i,j)== precond(k,i) && Out1(i,j)~=0
Q(i,j,k) = (Out2(k)./Out1(i,j)).*e2(k);
else
Q(i,j,k) = 0;
end
end
end
end

Theta21 = sum(Q,3);

%自适应参数调整
if isempty(find(In1==mean1))

deltamean1 = Theta21.*(2*b1./(In1-mean1)).*Out1.*(1-Out1);
deltab1 = Theta21.*(-2).*log(abs((In1-mean1)./sigma1)).*Out1.*(1-Out1);
deltasigma1 = Theta21.*(2*b1./sigma1).*Out1.*(1-Out1);
dmean1 = Learn_rate*deltamean1 + coff*dmean1;
mean1 = mean1 + dmean1;
dsigma1 = Learn_rate*deltasigma1 + coff*dsigma1;
sigma1 = sigma1 + dsigma1;
db1 = Learn_rate*deltab1 + coff*db1;
b1 = b1 + db1;

for i=1:Number_Fuzzy_rules-1
if ~isempty(find(mean1(:,i)>mean1(:,i+1)))
for i=1:Number_signal_in
[mean1(i,:) index1] = sort(mean1(i,:));
sigma1(i,:) = sigma1(i,index1);
b1(i,:) = b1(i,index1);
end
end
end

end

%完成参数学习过程
%并保存参数学习结果
Xt = [reshape(mean1,Number_signal_in*Number_Fuzzy_rules,1);reshape(sigma1,Number_signal_in*Number_Fuzzy_rules,1);reshape(b1,Number_signal_in*Number_Fuzzy_rules,1);reshape(P,((Number_signal_in+1)*NumRules)^2,1);ThetaL4;reshape(dmean1,Number_signal_in*Number_Fuzzy_rules,1);reshape(dsigma1,Number_signal_in*Number_Fuzzy_rules,1);reshape(db1,Number_signal_in*Number_Fuzzy_rules,1);dThetaL4;];
end

out=Xt;

%S函数的第三步,定义各个网络层的数据转换
elseif flag == 3
Feedfor_phase;
%定义整个模糊神经网络的各个层的数据状态
%第一层
x = u(1:Number_inport);
In1 = x*ones(1,Number_Fuzzy_rules);%第一层的输入
Out1 = 1./(1 + (abs((In1-mean1)./sigma1)).^(2*b1));%第一层的输出,这里,这个神经网络的输入输出函数可以修改
%第一层
precond = Out1';
Out2 = prod(Out1)';
S_2 = sum(Out2);%计算和
%第三层
if S_2~=0
Out3 = Out2'./S_2;
else
Out3 = zeros(1,NumRules);%为了在模糊控制的时候方便系统的运算,需要对系统进行归一化处理
end
%第四层
Aux1 = [x; 1]*Out3;
a = reshape(Aux1,(Number_signal_in+1)*NumRules,1);%控制输出
%第五层,最后结果输出
outact = a'*ThetaL4;
%最后的出处结果
out = [outact;Xt];
else
out = [];
end

TS模糊控制器的S函数

function [out,Xt,str,ts] = Sfunc_fnn_TS(t,Xt,u,flag,Learn_rate,coffa,lamda,r,vigilance,coffb,arate,Number_signal_in,Number_Fuzzy_rules,x0,Xmins,Data_range,T_samples)


%输入定义

% t,Xt,u,flag :S函数固定的几个输入脚

% Learn_rate :学习度
% coffb :用于神经网络第一层的参数调整
% lamda :神经网络的学习遗忘因子
% Number_signal_in :输入的信号的个数
% Number_Fuzzy_rules :模糊控制规则数
% T_samples :模块采样率

Data_in_numbers = Number_signal_in;
Data_out_numbers = 1;
%整个系统的输入x,误差输入e,以及训练指令的数组的长度
ninps = Data_in_numbers+Data_out_numbers+1;
Number_Fuzzy_rules2 = Number_Fuzzy_rules;
Num_out1 = 2*Number_signal_in*Number_Fuzzy_rules + ((Number_signal_in+1)*Number_Fuzzy_rules2)^2 + (Number_signal_in+1)*Number_Fuzzy_rules2 + 1;
Num_out2 = 2*Number_signal_in*Number_Fuzzy_rules + (Number_signal_in+1)*Number_Fuzzy_rules2;

%S函数第一步,参数的初始化
if flag == 0
out = [0,Num_out1+Num_out2,1+Num_out1+Num_out2,ninps,0,1,1];
str = [];
ts = T_samples;
Xt = x0;


%S函数的第二步,状态的计算
elseif flag == 2
x1 = (u(1:Data_in_numbers) - Xmins)./Data_range;
x = [ x1; ones(Data_in_numbers,1) - x1];
e = u(Data_in_numbers+1:Data_in_numbers+Data_out_numbers);
learning = u(Data_in_numbers+Data_out_numbers+1);

%1的时候为正常工作状态
if learning == 1

NumRules = Xt(1);
NumInTerms = NumRules;
Feedfor_phase;
%最佳参数搜索
New_nodess = 0;
reass = 0;
Rst_nodes = [];
rdy_nodes = [];

while reass == 0 && NumInTerms<Number_Fuzzy_rules
%搜索最佳点
N = size(w_a,2);
node_tmp = x * ones(1,N);
A_AND_w = min(node_tmp,w_a);
Sa = sum(abs(A_AND_w));
Ta = Sa ./ (coffb + sum(abs(w_a)));

%节点归零
Ta(Rst_nodes) = zeros(1,length(Rst_nodes));
Ta(rdy_nodes) = zeros(1,length(rdy_nodes));
[Tamax,J] = max(Ta);
w_J = w_a(:,J);
xa = min(x,w_J);

%最佳节点测试
if sum(abs(xa))./Number_signal_in >= vigilance,
reass = 1;
w_a(:,J) = arate*xa + (1-arate)*w_a(:,J);

elseif sum(abs(xa))/Number_signal_in < vigilance,
reass = 0;
Rst_nodes = [Rst_nodes J ];
end

if length(Rst_nodes)== N || length(rdy_nodes)== N
w_a = [w_a x];
New_nodess = 1;
reass = 0;
end

end;

%节点更新
u2 = w_a(1:Number_signal_in,:);
v2 = 1 - w_a(Number_signal_in+1:2*Number_signal_in,:);
NumInTerms = size(u2,2);
NumRules = NumInTerms;

if New_nodess == 1
ThetaL5 = [ThetaL5; zeros(Number_signal_in+1,1)];
dThetaL5 = [dThetaL5; zeros(Number_signal_in+1,1)];
P = [ P zeros((Number_signal_in+1)*(NumRules-1),Number_signal_in+1);
zeros(Number_signal_in+1,(Number_signal_in+1)*(NumRules-1)) 1e6*eye(Number_signal_in+1); ];
du2 = [du2 zeros(Number_signal_in,1);];
dv2 = [dv2 zeros(Number_signal_in,1);];
end


%层2:
x1_tmp = x1;
x1_tmp2 = x1_tmp*ones(1,NumInTerms);
Out2 = 1 - check(x1_tmp2-v2,r) - check(u2-x1_tmp2,r);
%层3:
Out3 = prod(Out2);
S_3 = sum(Out3);
%层4:
if S_3~=0
Out4 = Out3/S_3;
else
Out4 = zeros(1,NumRules);
end

Aux1 = [x1_tmp; 1]*Out4;
a = reshape(Aux1,(Number_signal_in+1)*NumRules,1);

%层五
P = (1./lamda).*(P - P*a*a'*P./(lamda+a'*P*a));
ThetaL5 = ThetaL5 + P*a.*e;
ThetaL5_tmp = reshape(ThetaL5,Number_signal_in+1,NumRules);

%错误反馈
%层4:
e4 = [x1_tmp' 1]*ThetaL5_tmp.*e;
denom = S_3*S_3;
%层3:
Theta43 = zeros(NumRules,NumRules);
if denom~=0
for k1=1:NumRules
for k2=1:NumRules
if k1==k2
Theta43(k1,k2) = ((S_3-Out3(k2))./denom).*e4(k2);
else
Theta43(k1,k2) = -(Out3(k2)./denom).*e4(k2);
end
end
end
end

e3 = sum(Theta43,2);

%层2
Q = zeros(Number_signal_in,NumInTerms,NumRules);
for i=1:Number_signal_in
for j=1:NumInTerms
for k=1:NumRules
if j==k && Out2(i,j)~=0
Q(i,j,k) = (Out3(k)./Out2(i,j)).*e3(k);
else
Q(i,j,k) = 0;
end
end
end
end

Thetass = sum(Q,3);
Thetavv = zeros(Number_signal_in,NumInTerms);
Thetauu = zeros(Number_signal_in,NumInTerms);

for i=1:Number_signal_in
for j=1:NumInTerms
if ((Out2(i)-v2(i,j))*r>=0) && ((Out2(i)-v2(i,j))*r<=1)
Thetavv(i,j) = r;
end
if ((u2(i,j)-Out2(i))*r>=0) && ((u2(i,j)-Out2(i))*r<=1)
Thetauu(i,j) = -r;
end
end
end

%根据学习结果辨识参数计算
e3_tmp = (e3*ones(1,Number_signal_in))';
du2 = Learn_rate*Thetavv.*e3_tmp.*Thetass + coffa*du2;
dv2 = Learn_rate*Thetauu.*e3_tmp.*Thetass + coffa*dv2;
v2 = v2 + du2;
u2 = u2 + dv2;


if ~isempty(find(u2>v2))
for i=1:Number_signal_in
for j=1:NumInTerms
if u2(i,j) > v2(i,j)
temp = v2(i,j);
v2(i,j) = u2(i,j);
u2(i,j) = temp;
end
end
end
end

if ~isempty(find(u2<0)) || ~isempty(find(v2>1))
for i=1:Number_signal_in
for j=1:NumInTerms
if u2(i,j) < 0
u2(i,j) = 0;
end
if v2(i,j) > 1
v2(i,j) = 1;
end
end
end
end

%WA由学习结果更新
w_a = [u2; 1-v2];

%上面的结果完成学习过程

Xt1 = [NumRules;reshape(w_a,2*Number_signal_in*NumInTerms,1);reshape(P,((Number_signal_in+1)*NumRules)^2,1); ThetaL5;reshape(du2,Number_signal_in*NumInTerms,1);reshape(dv2,Number_signal_in*NumInTerms,1);dThetaL5;];
ns1 = size(Xt1,1);
Xt = [Xt1; zeros(Num_out1+Num_out2-ns1,1);];
end

out=Xt;

A05-04




%S函数的第三步,定义各个网络层的数据转换
elseif flag == 3
NumRules = Xt(1);
NumInTerms = NumRules;
Feedfor_phase;
u2 = w_a(1:Number_signal_in,:);
v2 = 1 - w_a(Number_signal_in+1:2*Number_signal_in,:);

%层1输出
x1 = (u(1:Data_in_numbers) - Xmins)./Data_range;
%层2输出
x1_tmp = x1;
x1_tmp2 = x1_tmp*ones(1,NumInTerms);
Out2 = 1 - check(x1_tmp2-v2,r) - check(u2-x1_tmp2,r);
%层3输出
Out3 = prod(Out2);
S_3 = sum(Out3);
%层4输出.
if S_3~=0
Out4 = Out3/S_3;
else
Out4 = zeros(1,NumRules);
end

%层5输出
Aux1 = [x1_tmp; 1]*Out4;
a = reshape(Aux1,(Number_signal_in+1)*NumRules,1);
outact = a'*ThetaL5;
out = [outact;Xt];
else
out = [];
end

function y = check(s,r);

rows = size(s,1);
columns = size(s,2);
y = zeros(rows,columns);
for i=1:rows
for j=1:columns
if s(i,j).*r>1
y(i,j) = 1;
elseif 0 <= s(i,j).*r && s(i,j).*r <= 1
y(i,j) = s(i,j).*r;
elseif s(i,j).*r<0
y(i,j) = 0;
end
end
end

return

 

标签:simulink,end,rules,signal,模糊,Number,神经网络,NumRules,Fuzzy
From: https://www.cnblogs.com/matlabfpga/p/16803369.html

相关文章

  • TP5 where数组查询(模糊查询)(有多个查询条件) whensql判断条件:TP6 条件查询 sql判断
    sql判断条件:TP6条件查询sql判断条件_php菜鸟技术天地Db::name('user')->when($sex==1&&$type=1&&!empyt($score) ,function($query){Db::name('user')->when($s......
  • 分别使用BP/RBF/GRNN神经网络识别航迹异常matlab仿真
    一、理论基础1.1基于BP神经网络的识别1.2基于RBF神经网络的识别1.3基于GRNN神经网络的识别二、核心程序三、仿真测试结果作者ID:fpga和matlabCSDN主页:https://blog.c......
  • 06.模糊查询
    模糊查询模糊查询使用like关键字和通配符结合来实现,通配符具体含义如下:%:代表匹配0个字符、1个字符或多个字符_:代表匹配有且只有1个字符[]:代表匹配范围内[^]......
  • 深度学习与统计力学(III) :神经网络的误差曲面
    谷歌和斯坦福最新合作综述报告,发表在物理学的顶级期刊“凝聚态物理年鉴”(AnnualReviewofCondensedMatterPhysics)。作者YasamanBahri,JonathanKadmon,JeffreyPenni......
  • 训练深度学习神经网络的常用5个损失函数
    神经网络在训练时的优化首先是对模型的当前状态进行误差估计,然后为了减少下一次评估的误差,需要使用一个能够表示错误函数对权重进行更新,这个函数被称为损失函数。损失函......
  • 【算法】BP神经网络结构详解!
    BP神经网络结构与原理参数表示$n_l$:表示网络层数,此处为4$L_l$​:表示第l层,L1是输入层,$L_n$​是输出层,其他为隐含层$w^{(l)}_{ij}$​:表示第l+1层第i个单......
  • 06.模糊查询
    模糊查询模糊查询使用like关键字和通配符结合来实现,通配符具体含义如下:%:代表匹配0个字符、1个字符或多个字符_:代表匹配有且只有1个字符[]:代表匹配范围内[^]......
  • MyBatis 模糊查询时对特殊字符"%"和"_"的处理
    MyBatis 模糊查询时对特殊字符"%“和”_"的处理问题:输入"%“或”_",查询结果为全部数据,且无法查询到带有"%"或者下划线的数据。解决:对特殊字符转义例如查询字段为na......
  • 提高神经网络的识别率
    1.增加数据集的数量由于深度神经网络需要喂入大量的数据才能提高他的性能(特点),有时候简单的增加容量可以提高准确(吴恩达大佬视频内介绍深度学习崛起制作的图) 2.提高数......
  • 深度学习之浅层神经网络
    首先声明,本文参照(7条消息)【中文】【吴恩达课后编程作业】Course1-神经网络和深度学习-第三周作业_何宽的博客-CSDN博客_吴恩达课后编程作业(https://blog.csdn.net/......