首页 > 其他分享 >深度学习之浅层神经网络

深度学习之浅层神经网络

时间:2022-10-16 17:12:03浏览次数:78  
标签:str parameters 浅层 np 神经网络 W2 W1 深度 print

首先声明,本文参照(7条消息) 【中文】【吴恩达课后编程作业】Course 1 - 神经网络和深度学习 - 第三周作业_何宽的博客-CSDN博客_吴恩达课后编程作业(https://blog.csdn.net/u013733326/article/details/79702148)

本文所使用的资料已上传到百度网盘**【点击下载】**,提取码:qifu,请在开始之前下载好所需资料。当然还是需要将数据集放置在与代码同一层次。

加上自己的理解,方便自己以后的学习

我们需要准备一些软件包:

import numpy as np
import matplotlib.pyplot as plt
from testCases import *
import sklearn
import sklearn.datasets
import sklearn.linear_model
from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets

np.random.seed(1) #设置一个固定的随机种子,以保证接下来的步骤中我们的结果是一致的(所取的随机值是一样的)。

我们来看看我们将要使用的数据集, 下面的代码会将一个花的图案的2类数据集加载到变量X和Y中

X, Y = load_planar_dataset()
plt.scatter(X[0, :], X[1, :], c=np.squeeze(Y), s=40, cmap=plt.cm.Spectral) #绘制散点图
plt.show()

数据看起来像一朵红色(y = 0)和一些蓝色(y = 1)的数据点的花朵的图案。 我们的目标是建立一个模型来适应这些数据。现在,我们已经有了以下的东西:

X:一个numpy的矩阵,包含了这些数据点的数值
Y:一个numpy的向量,对应着的是X的标签【0 | 1】(红色:0 , 蓝色 :1)
我们继续来仔细地看数据:

shape_X = X.shape
shape_Y = Y.shape
m = Y.shape[1]  # 训练集里面的数量

print ("X的维度为: " + str(shape_X))
print ("Y的维度为: " + str(shape_Y))
print ("数据集里面的数据有:" + str(m) + " 个")
X的维度为: (2, 400)
Y的维度为: (1, 400)
数据集里面的数据有:400 个
在构建完整的神经网络之前,先让我们看看逻辑回归在这个问题上的表现如何,我们可以使用sklearn的内置函数来做到这一点, 运行下面的代码来训练数据集上的逻辑回归分类器。
clf = sklearn.linear_model.LogisticRegressionCV()
clf.fit(X.T,Y.T)

会打印出这样一段字:

E:\anaconda\lib\site-packages\sklearn\utils\validation.py:993: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
#原型plot_decision_boundary(modle,x,y)对x进行预测,大于0.5取红色,小于0.5取蓝色
plot_decision_boundary(lambda x: clf.predict(x), X, Y) #绘制决策边界
plt.title("Logistic Regression") #图标题
LR_predictions  = clf.predict(X.T) #预测结果
#Y的取值只有(0,1)所以这里要用“+”
print ("逻辑回归的准确性: %d " % float((np.dot(Y, LR_predictions) +
                                np.dot(1 - Y,1 - LR_predictions)) / float(Y.size) * 100) +
                               "% " + "(正确标记的数据点所占的百分比)")
逻辑回归的准确性: 47 % (正确标记的数据点所占的百分比)

 

 准确性只有47%的原因是数据集不是线性可分的,所以逻辑回归表现不佳,现在我们正式开始构建神经网络。(跟没分类一样,50%是最不好的分类情况)

搭建神经网络

隐藏层我们采取的是tanh函数,其导数为1-(tanh)^2

对于x(i)而言

 给出所有示例的预测结果,可以按如下方式计算成本J:

构建神经网络的一般方法是:

  1. 定义神经网络结构(输入单元的数量,隐藏单元的数量等)。
  2. 初始化模型的参数
  3. 循环:
  • 实施前向传播
  • 计算损失
  • 实现向后传播
  • 更新参数(梯度下降)

  我们要它们合并到一个nn_model() 函数中,当我们构建好了nn_model()并学习了正确的参数,我们就可以预测新的数据。

  • n_x: 输入层的数量
  • n_h: 隐藏层的数量(这里设置为4)当然可以设置为其他
  • n_y: 输出层的数量
def layer_sizes(X , Y):
    """
    参数:
     X - 输入数据集,维度为(输入的数量,训练/测试的数量)
     Y - 标签,维度为(输出的数量,训练/测试数量)
    
    返回:
     n_x - 输入层的数量
     n_h - 隐藏层的数量
     n_y - 输出层的数量
    """
    n_x = X.shape[0] #输入层
    n_h = 4 #,隐藏层,硬编码为4
    n_y = Y.shape[0] #输出层
    
    return (n_x,n_h,n_y)

接下来,我们测试一下

#测试layer_sizes
print("=========================测试layer_sizes=========================")
X_asses , Y_asses = layer_sizes_test_case()
(n_x,n_h,n_y) =  layer_sizes(X_asses,Y_asses)
print("输入层的节点数量为: n_x = " + str(n_x))
print("隐藏层的节点数量为: n_h = " + str(n_h))
print("输出层的节点数量为: n_y = " + str(n_y))
=========================测试layer_sizes=========================
输入层的节点数量为: n_x = 5
隐藏层的节点数量为: n_h = 4
输出层的节点数量为: n_y = 2

初始化模型的参数
在这里,我们要实现函数initialize_parameters()。我们要确保我们的参数大小合适,如果需要的话,请参考上面的神经网络图。
我们将会用随机值初始化权重矩阵。

  • np.random.randn(a,b)* 0.01来随机初始化一个维度为(a,b)的矩阵

将偏向量初始化为零。

  • np.zeros((a,b))用零初始化矩阵(a,b)

这里做一下解释,为什么要乘以0.01

 

如图,乘以的数越大,增长的速率越慢,因此我们采用0.01.

我们继续走

def initialize_parameters( n_x , n_h ,n_y):
    """
    参数:
        n_x - 输入层节点的数量
        n_h - 隐藏层节点的数量
        n_y - 输出层节点的数量
    
    返回:
        parameters - 包含参数的字典:
            W1 - 权重矩阵,维度为(n_h,n_x)
            b1 - 偏向量,维度为(n_h,1)
            W2 - 权重矩阵,维度为(n_y,n_h)
            b2 - 偏向量,维度为(n_y,1)

    """
    np.random.seed(2) #指定一个随机种子,以便你的输出与我们的一样。
    W1 = np.random.randn(n_h,n_x) * 0.01
    b1 = np.zeros(shape=(n_h, 1))
    W2 = np.random.randn(n_y,n_h) * 0.01
    b2 = np.zeros(shape=(n_y, 1))
    
    #使用断言确保我的数据格式是正确的
    assert(W1.shape == ( n_h , n_x ))
    assert(b1.shape == ( n_h , 1 ))
    assert(W2.shape == ( n_y , n_h ))
    assert(b2.shape == ( n_y , 1 ))
    
    parameters = {"W1" : W1,
                  "b1" : b1,
                  "W2" : W2,
                  "b2" : b2 }
    
    return parameters

我们来测试一下

#测试initialize_parameters
print("=========================测试initialize_parameters=========================")    
n_x , n_h , n_y = initialize_parameters_test_case()
parameters = initialize_parameters(n_x , n_h , n_y)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
=========================测试initialize_parameters=========================
W1 = [[-0.00416758 -0.00056267]
 [-0.02136196  0.01640271]
 [-0.01793436 -0.00841747]
 [ 0.00502881 -0.01245288]]
b1 = [[0.]
 [0.]
 [0.]
 [0.]]
W2 = [[-0.01057952 -0.00909008  0.00551454  0.02292208]]
b2 = [[0.]]

循环

前向传播

我们现在要实现前向传播函数forward_propagation()。
我们可以使用sigmoid()函数,也可以使用np.tanh()函数。
步骤如下:

def forward_propagation( X , parameters ):
    """
    参数:
         X - 维度为(n_x,m)的输入数据。
         parameters - 初始化函数(initialize_parameters)的输出
    
    返回:
         A2 - 使用sigmoid()函数计算的第二次激活后的数值
         cache - 包含“Z1”,“A1”,“Z2”和“A2”的字典类型变量
     """
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    #前向传播计算A2
    Z1 = np.dot(W1 , X) + b1
    A1 = np.tanh(Z1)
    Z2 = np.dot(W2 , A1) + b2
    A2 = sigmoid(Z2)
    #使用断言确保我的数据格式是正确的
    assert(A2.shape == (1,X.shape[1]))
    cache = {"Z1": Z1,
             "A1": A1,
             "Z2": Z2,
             "A2": A2}
    
    return (A2, cache)

我们测试一下:

#测试forward_propagation
print("=========================测试forward_propagation=========================") 
X_assess, parameters = forward_propagation_test_case()
A2, cache = forward_propagation(X_assess, parameters)
print(np.mean(cache["Z1"]), np.mean(cache["A1"]), np.mean(cache["Z2"]), np.mean(cache["A2"]))
=========================测试forward_propagation=========================
-0.0004997557777419902 -0.000496963353231779 0.00043818745095914653 0.500109546852431

计算损失

def compute_cost(A2,Y,parameters):
    """
    计算方程(5)中给出的交叉熵成本,
    
    参数:
         A2 - 使用sigmoid()函数计算的第二次激活后的数值
         Y - "True"标签向量,维度为(1,数量)
         parameters - 一个包含W1,B1,W2和B2的字典类型的变量
    
    返回:
         成本 - 交叉熵成本给出方程(13)
    """
    
    m = Y.shape[1]
    W1 = parameters["W1"]
    W2 = parameters["W2"]
    
    #计算成本
    logprobs = logprobs = np.multiply(np.log(A2), Y) + np.multiply((1 - Y), np.log(1 - A2))
    cost = - np.sum(logprobs) / m
    cost = float(np.squeeze(cost))
    
    assert(isinstance(cost,float))
    
    return cost

测试一下我们的成本函数:

#测试compute_cost
print("=========================测试compute_cost=========================") 
A2 , Y_assess , parameters = compute_cost_test_case()
print("cost = " + str(compute_cost(A2,Y_assess,parameters)))
=========================测试compute_cost=========================
cost = 0.6929198937761266

使用正向传播期间计算的cache,现在可以利用它实现反向传播。

现在我们要开始实现函数backward_propagation()。

向后传播

这里的公式还是比较复杂的,最好是自己推导一下,方便记忆

def backward_propagation(parameters,cache,X,Y):
    """
    使用上述说明搭建反向传播函数。
    
    参数:
     parameters - 包含我们的参数的一个字典类型的变量。
     cache - 包含“Z1”,“A1”,“Z2”和“A2”的字典类型的变量。
     X - 输入数据,维度为(2,数量)
     Y - “True”标签,维度为(1,数量)
    
    返回:
     grads - 包含W和b的导数一个字典类型的变量。
    """
    m = X.shape[1]
    
    W1 = parameters["W1"]
    W2 = parameters["W2"]
    
    A1 = cache["A1"]
    A2 = cache["A2"]
    
    dZ2= A2 - Y
    dW2 = (1 / m) * np.dot(dZ2, A1.T)
    db2 = (1 / m) * np.sum(dZ2, axis=1, keepdims=True)
    dZ1 = np.multiply(np.dot(W2.T, dZ2), 1 - np.power(A1, 2))
    dW1 = (1 / m) * np.dot(dZ1, X.T)
    db1 = (1 / m) * np.sum(dZ1, axis=1, keepdims=True)
    grads = {"dW1": dW1,
             "db1": db1,
             "dW2": dW2,
             "db2": db2 }
    
    return grads

测试一下反向传播函数:

#测试backward_propagation
print("=========================测试backward_propagation=========================")
parameters, cache, X_assess, Y_assess = backward_propagation_test_case()

grads = backward_propagation(parameters, cache, X_assess, Y_assess)
print ("dW1 = "+ str(grads["dW1"]))
print ("db1 = "+ str(grads["db1"]))
print ("dW2 = "+ str(grads["dW2"]))
print ("db2 = "+ str(grads["db2"]))
=========================测试backward_propagation=========================
dW1 = [[ 0.01018708 -0.00708701]
 [ 0.00873447 -0.0060768 ]
 [-0.00530847  0.00369379]
 [-0.02206365  0.01535126]]
db1 = [[-0.00069728]
 [-0.00060606]
 [ 0.000364  ]
 [ 0.00151207]]
dW2 = [[ 0.00363613  0.03153604  0.01162914 -0.01318316]]
db2 = [[0.06589489]]

更新参数

def update_parameters(parameters,grads,learning_rate=1.2):
    """
    使用上面给出的梯度下降更新规则更新参数
    
    参数:
     parameters - 包含参数的字典类型的变量。
     grads - 包含导数值的字典类型的变量。
     learning_rate - 学习速率
    
    返回:
     parameters - 包含更新参数的字典类型的变量。
    """
    W1,W2 = parameters["W1"],parameters["W2"]
    b1,b2 = parameters["b1"],parameters["b2"]
    
    dW1,dW2 = grads["dW1"],grads["dW2"]
    db1,db2 = grads["db1"],grads["db2"]
    
    W1 = W1 - learning_rate * dW1
    b1 = b1 - learning_rate * db1
    W2 = W2 - learning_rate * dW2
    b2 = b2 - learning_rate * db2
    
    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}
    
    return parameters

我们测试一下update_parameters():

#测试update_parameters
print("=========================测试update_parameters=========================")
parameters, grads = update_parameters_test_case()
parameters = update_parameters(parameters, grads)

print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
=========================测试update_parameters=========================
W1 = [[-0.00643025  0.01936718]
 [-0.02410458  0.03978052]
 [-0.01653973 -0.02096177]
 [ 0.01046864 -0.05990141]]
b1 = [[-1.02420756e-06]
 [ 1.27373948e-05]
 [ 8.32996807e-07]
 [-3.20136836e-06]]
W2 = [[-0.01041081 -0.04463285  0.01758031  0.04747113]]
b2 = [[0.00010457]]

整合

我们现在把上面的东西整合到nn_model()中,神经网络模型必须以正确的顺序使用先前的功能。

def nn_model(X,Y,n_h,num_iterations,print_cost=False):
    """
    参数:
        X - 数据集,维度为(2,示例数)
        Y - 标签,维度为(1,示例数)
        n_h - 隐藏层的数量
        num_iterations - 梯度下降循环中的迭代次数
        print_cost - 如果为True,则每1000次迭代打印一次成本数值
    
    返回:
        parameters - 模型学习的参数,它们可以用来进行预测。
     """
     
    np.random.seed(3) #指定随机种子
    n_x = layer_sizes(X, Y)[0]
    n_y = layer_sizes(X, Y)[2]
    
    parameters = initialize_parameters(n_x,n_h,n_y)
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    
    for i in range(num_iterations):
        A2 , cache = forward_propagation(X,parameters)
        cost = compute_cost(A2,Y,parameters)
        grads = backward_propagation(parameters,cache,X,Y)
        parameters = update_parameters(parameters,grads,learning_rate = 0.5)
        
        if print_cost:
            if i%1000 == 0:
                print("第 ",i," 次循环,成本为:"+str(cost))
    return parameters

老规矩,测试nn_model():

#测试nn_model
print("=========================测试nn_model=========================")
X_assess, Y_assess = nn_model_test_case()

parameters = nn_model(X_assess, Y_assess, 4, num_iterations=10000, print_cost=False)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
=========================测试nn_model=========================
W1 = [[-3.89167767  4.77541602]
 [-6.77960338  1.20272585]
 [-3.88338966  4.78028666]
 [ 6.77958203 -1.20272574]]
b1 = [[ 2.11530892]
 [ 3.41221357]
 [ 2.11585732]
 [-3.41221322]]
W2 = [[-2512.9093032  -2502.70799785 -2512.01655969  2502.65264416]]
b2 = [[-22.29071761]]

预测

构建predict()来使用模型进行预测, 使用向前传播来预测结果。

def predict(parameters,X):
    """
    使用学习的参数,为X中的每个示例预测一个类
    
    参数:
        parameters - 包含参数的字典类型的变量。
        X - 输入数据(n_x,m)
    
    返回
        predictions - 我们模型预测的向量(红色:0 /蓝色:1)
     
     """
    A2 , cache = forward_propagation(X,parameters)
    predictions = np.round(A2)
    
    return predictions

测试一下predict:

#测试predict
print("=========================测试predict=========================")

parameters, X_assess = predict_test_case()

predictions = predict(parameters, X_assess)
print("预测的平均值 = " + str(np.mean(predictions)))
=========================测试predict=========================
预测的平均值 = 0.6666666666666666

正式运行

parameters = nn_model(X, Y, n_h = 4, num_iterations=10000, print_cost=True)

#绘制边界
plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
plt.title("Decision Boundary for hidden layer size " + str(4))

predictions = predict(parameters, X)
print ('准确率: %d' % float((np.dot(Y, predictions.T) + np.dot(1 - Y, 1 - predictions.T)) / float(Y.size) * 100) + '%')
第  0  次循环,成本为:0.6930480201239823
第  1000  次循环,成本为:0.3098018601352803
第  2000  次循环,成本为:0.2924326333792646
第  3000  次循环,成本为:0.2833492852647412
第  4000  次循环,成本为:0.27678077562979253
第  5000  次循环,成本为:0.26347155088593144
第  6000  次循环,成本为:0.24204413129940763
第  7000  次循环,成本为:0.23552486626608762
第  8000  次循环,成本为:0.23140964509854278
第  9000  次循环,成本为:0.22846408048352365
准确率: 90%

 

标签:str,parameters,浅层,np,神经网络,W2,W1,深度,print
From: https://www.cnblogs.com/kk-style/p/16796558.html

相关文章

  • 人工神经网络的优缺点
    人工神经网络由于模拟了大脑神经元的组织方式而具有了人脑功能的一些基本特征,为人工智能的研究开辟了新的途径,神经网络具有的优点在于:(1)并行分布性处理因为人工神经网络......
  • 【预测模型-BP分类】基于萤火虫算法优化BP神经网络实现数据分类附matlab代码
    ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。......
  • 深度学习算法基础
    1,基本概念1.1,余弦相似度1.2,欧式距离1.3,余弦相似度和欧氏距离的区别2,容量、欠拟合和过拟合3,正则化方法4,超参数和验证集5,估计、偏差和方差6,随机梯度下降算法......
  • 实现Android深度加固:代码、资源、so库加密隐藏。兼容unity引擎和各种机型
    1.为什么做加固因为不想辛辛苦苦做的东西,被别人拿去改成各种版,半路摘我的桃子。2.怎么加固2.1简单的加固三方加固,有些三方会有免费版本的加固服务比如腾讯加固2.2......
  • B-神经网络模型复杂度分析
    目录结构一,模型计算量分析二,模型参数量分析三,一些概念四,参考资料前言现阶段的轻量级模型MobileNet/ShuffleNet系列、CSPNet、RepVGG、VoVNet等都必须依赖于于具......
  • 使用Keras生成可变尺寸输入数据的神经网络
    本教程发布于博客园,转载请注明出处!问题:在使用神经网络处理实际数据时,往往遇到数据尺寸不相同的情况。例如:训练得到一个图片去雾模型后,需要对不同尺寸的照片去雾。解决方......
  • 基于BP神经网络创板企业估值水平预测
    ‍数据来源本文数据来源于第十六届“五一数学建模竞赛”的C题数据,原题目《科创板拟上市企业估值》,原题目要求如下:截至2019年4月27日,上海证券交易所已受理93家企业申报科创板......
  • 深度学习算法工程师内心感悟
    某网友:数据放在第一位,成也数据,败也数据。深刻认识数据的重要性,把数据集维护好,数据量够了,再谈后面的模型优化,数据都不干净,用再好的模型,也不会出好的结果。启动开发前,多问......
  • pandas中Query方法深度总结
    使用query()方法如果使用 query() 方法,那么看起来更整洁df.query('Embarked == "S"')很多时候,我们可能希望将变量值传递到查询字符串中,可以使用@字符执行此操作......
  • 建立简单的神经网络
    fromtorchimportnnimporttorch.nn.functionalasfclassmy(nn.Module):definit(self):super(my,self).init()my.a=nn.Linear(3,3)my.b=nn.Linear(3,1)deffo......