首页 > 其他分享 >泊松回归和地理加权泊松回归

泊松回归和地理加权泊松回归

时间:2024-06-10 14:33:25浏览次数:24  
标签:加权 泊松 变量 ... 回归 次数 事件

 01

泊松回归

图片

泊松回归(Poisson Regression)是一种广义线性模型,用于建立离散型响应变量(计数数据)与一个或多个预测变量之间的关系。它以法国数学家西蒙·丹尼·泊松(Siméon Denis Poisson)的名字命名,适用于计算“事件发生次数”的概率,比如交通事故发生次数、产品缺陷数量等离散计数数据。

泊松回归假设响应变量(因变量)Y服从泊松分布,该分布用于描述在固定时间或空间范围内发生事件的数量。泊松分布的特点是对于一个特定时间或空间区间,事件发生的平均速率是常数,并且事件之间是独立的。

泊松回归的模型形式如下:


log(λ) = β0 + β1*x1 + β2*x2 + ... + βn*xn

其中,λ表示事件发生的平均速率(事件发生次数的期望),log是自然对数,β0, β1, β2, ..., βn是回归系数,x1, x2, ..., xn是预测变量。

在泊松回归中,使用最大似然估计方法来估计回归系数,最大化观测数据在模型下的似然函数。泊松回归的结果表明每个预测变量对于事件发生次数的影响程度,系数的正负号表示预测变量与事件发生次数之间的正向或负向关系,而系数

标签:加权,泊松,变量,...,回归,次数,事件
From: https://blog.csdn.net/JData_Engineer/article/details/139464647

相关文章

  • GWO-LSTM多输入回归预测|灰狼算法-双向长短期神经网络|Matlab
    目录一、程序及算法内容介绍:基本内容:亮点与优势: 二、实际运行效果:三、算法介绍:四、完整程序下载:一、程序及算法内容介绍:基本内容:本代码基于Matlab平台编译,将GWO(灰狼群算法)与Bi-LSTM(双向长短期记忆神经网络)结合,进行多输入数据回归预测输入训练的数据包含7个特......
  • 【图像融合】基于加权算法实现高分辨率和低分辨率图像融合,含清晰度附Matlab代码
     ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。......
  • 100天精通风控建模(原理+Python实现)——第28天:风控建模中逻辑回归是什么?主要应用在
    在当今风险多变的环境下,风控建模已经成为金融机构、企业等组织的核心工作之一。在各大银行和公司都实际运用于业务,用于营销和风险控制等。本文以视频的形式阐述风控建模中逻辑回归是什么,主要应用在哪些方面。并提供风控建模原理和Python实现文章清单。  之前已经阐述了1......
  • 从本地读取两个数组,计算一元线性回归
    #include<iostream>#include<fstream>#include<sstream>#include<string>#include<vector>#include<numeric>structLinearRegression{doubleslope;doubleintercept;LinearRegression(conststd::vecto......
  • 机器学习笔记(2): Logistic 回归
    Logistic回归是线性回归中一个很重要的部分。Logistic函数:\[\sigma(x)=\frac{L}{1+\exp(-k(x-x_0))}\]其中:\(L\)表示最大值\(x_0\)表示对称中心\(k\)表示倾斜度一般来说,都将\(L\)设为\(1\),而\(k\)和\(x_0\)在参数中控制。认为特征只有一个,那么自......
  • 机器学习算法(一):1. numpy从零实现线性回归
    系列文章目录机器学习算法(一):1.numpy从零实现线性回归机器学习算法(一):2.线性回归之多项式回归(特征选取)@目录系列文章目录前言一、理论介绍二、代码实现1、导入库2、准备数据集3、定义预测函数(predict)4代价(损失)函数5计算参数梯度6批量梯度下降7训练8可视化一下损失总结前......
  • 【机器学习300问】108、什么是多项式回归模型?
    一、多项式回归是什么(1)举例说明        假设你经营着一家农场,想要根据土地面积来预测作物的产量。如果你只用线性模型(即),你可能会发现它并不足以描述实际的产量情况,因为实际产量可能会随着土地面积的增加而经历先快速增加然后趋于平缓的过程。线性回归模型......
  • PCL Loess曲线回归拟合(二维)
    文章目录一、简介二、实现代码三、实现效果参考文献一、简介LOESS(局部加权回归)回归的原理是基于非参数方法,它主要用于描述两个变量之间复杂的、非线性的关系。LOESS方法的核心在于“局部”和“加权”。它会在每个数据点附近选取一个子集(或称为窗口),并利用这个子......
  • 锂电池寿命预测 | Matlab基于SSA-SVR麻雀优化支持向量回归的锂离子电池剩余寿命预测
    目录预测效果基本介绍程序设计参考资料预测效果基本介绍【锂电池剩余寿命RUL预测案例】锂电池寿命预测|Matlab基于SSA-SVR麻雀优化支持向量回归的锂离子电池剩余寿命预测(完整源码和数据)1、提取NASA数据集的电池容量,以历史容量作为输入,采用迭代预测的......
  • 回归模型的算法性能评价
    一、概述在一般形式的回归问题中,会得到系列的预测值,它们与真实值(groundtruth)的比较表征了模型的预测能力,为有效量化这种能力,常见的性能评价指标有可解释方差(EVS)、平均绝对误差(MAE)、均方误差(MSE)、均方根误差(RMSE)、决定系数(R2)等。值得一提的是,回归问题分单输出情形和多输出情形,在......