1049.最后一块石头的重量II
本题其实就是尽量让石头分成重量相同的两堆,相撞之后剩下的石头最小,这样就化解成01背包问题了。
本题物品的重量为stones[i],物品的价值也为stones[i]。
对应着01背包里的物品重量weight[i]和 物品价值value[i]。
思路:
动规五部曲
1.确定dp数组以及下标的含义
dp[j]表示容量(这里说容量更形象,其实就是重量)为j的背包,最多可以背最大重量为dp[j]。
2.确定递推公式
dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);
3.dp数组如何初始化
把石头遍历一遍,计算出石头总重量 然后除2,得到dp数组的大小。
因为重量都不会是负数,所以dp[j]都初始化为0就可以了,这样在递归公式dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);中dp[j]才不会初始值所覆盖。
4.确定遍历顺序
如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!
5.举例推导dp数组
补充:
在计算target的时候,target = sum / 2 因为是向下取整,所以sum - dp[target] 一定是大于等于dp[target]的。
那么相撞之后剩下的最小石头重量就是 (sum - dp[target]) - dp[target]。
class Solution {
public int lastStoneWeightII(int[] stones) {
if (stones == null || stones.length == 0) return 0;
int n = stones.length;
int sum = 0;
for (int num : stones) {
sum += num;
}
int target = sum >> 1;
int[] dp = new int[target + 1];
for (int i = 0; i < n; i++) {
for (int j = target; j >= stones[i]; j--) {
dp[j] = Math.max(dp[j], dp[j - stones[i]] + stones[i]);
}
}
return sum - 2 * dp[target];
}
}
494.目标和
本题要如何使表达式结果为target,
既然为target,那么就一定有 left组合 - right组合 = target。
left + right = sum,而sum是固定的。right = sum - left
公式来了, left - (sum - left) = target 推导出 left = (target + sum)/2 。
此时问题就转化为,装满容量为x的背包,有几种方法。
再回归到01背包问题,为什么是01背包呢?
因为每个物品(题目中的1)只用一次!
这次和之前遇到的背包问题不一样了,之前都是求容量为j的背包,最多能装多少。
本题则是装满有几种方法。其实这就是一个组合问题了。
思路:
动规五部曲
1.确定dp数组以及下标的含义
dp[j] 表示:填满j(包括j)这么大容积的包,有dp[j]种方法
2.确定递推公式
只要搞到nums[i],凑成dp[j]就有dp[j - nums[i]] 种方法。
例如:dp[j],j 为5,
已经有一个0(nums[i]) 的话,有 dp[5]种方法 凑成 容量为5的背包。
- 已经有一个1(nums[i]) 的话,有 dp[4]种方法 凑成 容量为5的背包。
- 已经有一个2(nums[i]) 的话,有 dp[3]种方法 凑成 容量为5的背包。
- 已经有一个3(nums[i]) 的话,有 dp[2]中方法 凑成 容量为5的背包
- 已经有一个4(nums[i]) 的话,有 dp[1]中方法 凑成 容量为5的背包
- 已经有一个5 (nums[i])的话,有 dp[0]中方法 凑成 容量为5的背包
那么凑整dp[5]有多少方法呢,也就是把 所有的 dp[j - nums[i]] 累加起来。
3.dp数组如何初始化
从递推公式可以看出,在初始化的时候dp[0] 一定要初始化为1,因为dp[0]是在公式中一切递推结果的起源,如果dp[0]是0的话,递推结果将都是0。
eg:
如果数组[0] ,target = 0,那么 bagSize = (target + sum) / 2 = 0。 dp[0]也应该是1, 也就是说给数组里的元素 0 前面无论放加法还是减法,都是 1 种方法。
所以本题我们应该初始化 dp[0] 为 1。
那 如果是 数组[0,0,0,0,0] target = 0 呢。
其实 此时最终的dp[0] = 32,也就是这五个零 子集的所有组合情况,但此dp[0]非彼dp[0],dp[0]能算出32,其基础是因为dp[0] = 1 累加起来的。
dp[j]其他下标对应的数值也应该初始化为0,从递推公式也可以看出,dp[j]要保证是0的初始值,才能正确的由dp[j - nums[i]]推导出来。
4.确定遍历顺序
一维dp的遍历,nums(物品)放在外循环,target(背包)在内循环,且内循环倒序。
5.举例推导dp数组
输入:nums: [1, 1, 1, 1, 1], S: 3
bagSize = (S + sum) / 2 = (3 + 5) / 2 = 4
如果S=2 则求不出这样的集合即(S + sum) / 2不能整除
代码
class Solution {
public int findTargetSumWays(int[] nums, int target) {
int n = nums.length;
int sum = 0;
for (int num : nums) {
sum += num;
}
if (Math.abs(target) > sum) return 0;
if ((target + sum) % 2 == 1) return 0; //不能整除 凑不成target 没有组合
int bagSize = (target + sum) / 2;
int[] dp = new int[bagSize + 1];
Arrays.fill(dp, 0);
dp[0] = 1;
for (int i = 0; i < n; i++) {
for (int j = bagSize; j >= nums[i]; j--) {
dp[j] += dp[j - nums[i]];
}
}
return dp[bagSize];
}
}
474.一和零
本题并不是多重背包,多重背包是每个物品,数量不同的情况。
本题中strs 数组里的元素就是物品,每个物品都是一个!
而m 和 n相当于是一个背包,两个维度的背包。
思路:
动规五部曲
1.确定dp数组(dp table)以及下标的含义
dp[i][j]:最多有i个0和j个1的strs的最大子集的大小为dp[i][j]。
2.确定递推公式
dp[i][j] 可以由前一个strs里的字符串推导出来,strs里的字符串有zeroNum个0,oneNum个1。
dp[i][j] 就可以是 dp[i - zeroNum][j - oneNum] + 1。
然后我们在遍历的过程中,取dp[i][j]的最大值。
所以递推公式:dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);
3.dp数组如何初始化
当背包的容量为0时是放不下物品的 故dp[0][0]=0
01背包的dp数组初始化为0就可以。
因为物品价值不会是负数,初始为0,保证递推的时候dp[i][j]不会被初始值覆盖。
4.确定遍历顺序
外层for循环遍历物品,内层for循环遍历背包容量且从后向前遍历!
那个遍历背包容量的两层for循环先后循序有没有什么讲究?
没讲究,都是物品重量的一个维度,先遍历哪个都行!
5.举例推导dp数组
以输入:["10","0001","111001","1","0"],m = 3,n = 3为例
代码
class Solution {
public int findMaxForm(String[] strs, int m, int n) {
int dp[][] = new int[m + 1][n + 1];
int oneNum, zeroNum;
for (String str : strs) {
oneNum = 0;
zeroNum = 0;
for(char ch:str.toCharArray()){
if(ch == '0'){
zeroNum++;
}else {
oneNum++;
}
}
for (int i = m; i >=zeroNum; i--) {
for (int j = n; j >= oneNum; j--) {
dp[i][j] = Math.max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1); //物品数
}
}
}
return dp[m][n];
}
}
标签:背包,target,nums,int,sum,II,474,494,dp
From: https://blog.csdn.net/m0_68259754/article/details/139339732