首页 > 其他分享 >实验6: 开源控制器实践——RYU

实验6: 开源控制器实践——RYU

时间:2022-10-18 13:47:48浏览次数:51  
标签:控制器 self parser datapath msg 开源 ofproto RYU port

开源控制器实践——RYU

一、实验目的

  1. 能够独立部署RYU控制器;
  2. 能够理解RYU控制器实现软件定义的集线器原理;
  3. 能够理解RYU控制器实现软件定义的交换机原理。

二、实验环境

Ubuntu 20.04 Desktop amd64

三、实验要求

(一)基本要求

  1. 搭建下图所示SDN拓扑,协议使用Open Flow 1.0,并连接Ryu控制器,通过Ryu的图形界面查看网络拓扑。

    img

    • 建立拓扑

      sudo mn --topo=single,3 --mac --controller=remote,ip=127.0.0.1,port=6633 --switch ovsk
      image

    • 连接Ryu控制器

    ryu-manager ryu/ryu/app/gui_topology/gui_topology.py --observe-links
    image

    • 通过Ryu的图形界面查看网络拓扑
      image

      在浏览器中输入地址http://127.0.0.1:8080即可打开ryu的图形界面

  2. 阅读Ryu文档的The First Application一节,运行当中的L2Switch,h1 ping h2或h3,在目标主机使用 tcpdump 验证L2Switch,分析L2Switch和POX的Hub模块有何不同。

    • 创建L2Switch.py文件并添加代码

      from ryu.base import app_manager
      from ryu.controller import ofp_event
      from ryu.controller.handler import MAIN_DISPATCHER
      from ryu.controller.handler import set_ev_cls
      from ryu.ofproto import ofproto_v1_0
      
      class L2Switch(app_manager.RyuApp):
          OFP_VERSIONS = [ofproto_v1_0.OFP_VERSION]
      
          def __init__(self, *args, **kwargs):
              super(L2Switch, self).__init__(*args, **kwargs)
      
          @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
          def packet_in_handler(self, ev):
              msg = ev.msg
              dp = msg.datapath
              ofp = dp.ofproto
              ofp_parser = dp.ofproto_parser
      
              actions = [ofp_parser.OFPActionOutput(ofp.OFPP_FLOOD)]
      
              data = None
              if msg.buffer_id == ofp.OFP_NO_BUFFER:
                   data = msg.data
      
              out = ofp_parser.OFPPacketOut(
                  datapath=dp, buffer_id=msg.buffer_id, in_port=msg.in_port,
                  actions=actions, data = data)
              dp.send_msg(out)
      
      
    • 运行L2Switch ryu-manager L2Switch.py
      image
      image

    • 开启主机终端 \(mininet>\)xterm h2 h3

    • 在h2主机终端中输入tcpdump -nn -i h2-eth0

    • 在h3主机终端中输入tcpdump -nn -i h3-eth0

    • h1 ping h2

    image

    • h1 ping h3

    image

    • 分析L2Switch和POX的Hub模块有何不同

    RYU的L2Switch模块和POX的Hub模块都采用洪泛转发,但不同之处在于:
    可以在pox的Hub模块运行时查看流表,而无法在ryu的L2Switch模块运行时查看到流表

  3. 编程修改L2Switch.py,另存为L2xxxxxxxxx.py,使之和POX的Hub模块的变得一致?(xxxxxxxxx为学号)

    • 创建L2032002541.py

      from ryu.base import app_manager
      from ryu.ofproto import ofproto_v1_3
      from ryu.controller import ofp_event
      from ryu.controller.handler import MAIN_DISPATCHER, CONFIG_DISPATCHER
      from ryu.controller.handler import set_ev_cls
       
       
      class hub(app_manager.RyuApp):
          OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]
       
          def __init__(self, *args, **kwargs):
              super(hub, self).__init__(*args, **kwargs)
       
          @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
          def switch_feathers_handler(self, ev):
              datapath = ev.msg.datapath
              ofproto = datapath.ofproto
              ofp_parser = datapath.ofproto_parser
       
              # install flow table-miss flow entry
              match = ofp_parser.OFPMatch()
              actions = [ofp_parser.OFPActionOutput(ofproto.OFPP_CONTROLLER, ofproto.OFPCML_NO_BUFFER)]
              # 1\OUTPUT PORT, 2\BUFF IN SWITCH?
              self.add_flow(datapath, 0, match, actions)
       
          def add_flow(self, datapath, priority, match, actions):
              # 1\ datapath for the switch, 2\priority for flow entry, 3\match field, 4\action for packet
              ofproto = datapath.ofproto
              ofp_parser = datapath.ofproto_parser
              # install flow
              inst = [ofp_parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, actions)]
              mod = ofp_parser.OFPFlowMod(datapath=datapath, priority=priority, match=match, instructions=inst)
              datapath.send_msg(mod)
       
          @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
          def packet_in_handler(self, ev):
              msg = ev.msg
              datapath = msg.datapath
              ofproto = datapath.ofproto
              ofp_parser = datapath.ofproto_parser
              in_port = msg.match['in_port']  # get in port of the packet
       
              # add a flow entry for the packet
              match = ofp_parser.OFPMatch()
              actions = [ofp_parser.OFPActionOutput(ofproto.OFPP_FLOOD)]
              self.add_flow(datapath, 1, match, actions)
       
              # to output the current packet. for install rules only output later packets
              out = ofp_parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id, in_port=in_port, actions=actions)
              # buffer id: locate the buffered packet
              datapath.send_msg(out)
      
      
    • 运行结果

    • 运行ryu-manager L2032002541.py

    • $ mininet> $dpctl dump-flows
      image

(二)进阶要求

  1. 阅读Ryu关于simple_switch.py和simple_switch_1x.py的实现,以simple_switch_13.py为例,完成其代码的注释工作,并回答下列问题:

    # Copyright (C) 2011 Nippon Telegraph and Telephone Corporation.
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    #    http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
    # implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    
    #导入需要使用的相应包
    from ryu.base import app_manager
    from ryu.controller import ofp_event
    from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER
    from ryu.controller.handler import set_ev_cls
    from ryu.ofproto import ofproto_v1_3
    from ryu.lib.packet import packet
    from ryu.lib.packet import ethernet
    from ryu.lib.packet import ether_types
    
    
    class SimpleSwitch13(app_manager.RyuApp):
        #指定OpenFlow 1.3版本
        OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION] 
    
        def __init__(self, *args, **kwargs):
            super(SimpleSwitch13, self).__init__(*args, **kwargs)
    	#self.mac_to_port是mac地址映射到转发端口的字典。
            self.mac_to_port = {} 
        @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
        def switch_features_handler(self, ev):
            # ev.msg 是用来存储对应事件的 OpenFlow 消息类别实体
            datapath = ev.msg.datapath   
    	# ofproto表示使用的OpenFlow版本所对应的ryu.ofproto.ofproto_v1_3
            ofproto = datapath.ofproto  
    	# 使用对应版本的ryu.ofproto.ofproto_v1_3_parser来解析协议
            parser = datapath.ofproto_parser 
    
            # install table-miss flow entry
            #
            # We specify NO BUFFER to max_len of the output action due to
            # OVS bug. At this moment, if we specify a lesser number, e.g.,
            # 128, OVS will send Packet-In with invalid buffer_id and
            # truncated packet data. In that case, we cannot output packets
            # correctly.  The bug has been fixed in OVS v2.1.0.
            match = parser.OFPMatch()
            actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,
                                              ofproto.OFPCML_NO_BUFFER)]
    	# priority = 0表示优先级最低,即若所有流表都匹配不到时,才会把数据包发送到controller
            self.add_flow(datapath, 0, match, actions)
     
        # 执行 add_flow() 方法以发送 Flow Mod 消息
        def add_flow(self, datapath, priority, match, actions, buffer_id=None):
            ofproto = datapath.ofproto
            parser = datapath.ofproto_parser
    
            inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,
                                                 actions)]
            if buffer_id:  
                mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id,
                                        priority=priority, match=match,
                                        instructions=inst)
            else:
                mod = parser.OFPFlowMod(datapath=datapath, priority=priority,
                                        match=match, instructions=inst)
            datapath.send_msg(mod)
    
    
        @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
        # 处理PacketIn事件
        def _packet_in_handler(self, ev): 
            # If you hit this you might want to increase
            # the "miss_send_length" of your switch
            if ev.msg.msg_len < ev.msg.total_len:
                self.logger.debug("packet truncated: only %s of %s bytes",
                                  ev.msg.msg_len, ev.msg.total_len)
            #从事件类里取出一些参数
    	msg = ev.msg
            datapath = msg.datapath
            ofproto = datapath.ofproto
            parser = datapath.ofproto_parser
            in_port = msg.match['in_port']
    
            pkt = packet.Packet(msg.data)
            eth = pkt.get_protocols(ethernet.ethernet)[0]
    
            if eth.ethertype == ether_types.ETH_TYPE_LLDP:
    	    #接受到了lldp包,就直接丢弃
                # ignore lldp packet
                return
            dst = eth.dst
            src = eth.src
    
            dpid = format(datapath.id, "d").zfill(16)
            self.mac_to_port.setdefault(dpid, {})
    
            self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port)
    
            #进行自学习,尽可能避免在下一次洪泛
            # learn a mac address to avoid FLOOD next time.
    	#dpid是交换机的id,src是数据包的源mac地址,in_port是交换机接受到包的端口
            self.mac_to_port[dpid][src] = in_port 
    
            #检验目的地址是否已经学习
    	if dst in self.mac_to_port[dpid]:
    	#如果已经学习到,则向交换机下发流表,并让交换机向相应端口转发包
                out_port = self.mac_to_port[dpid][dst]
            else:
    	#如果还没有学习到,则无法下发流表,让交换机洪泛转发包。
                out_port = ofproto.OFPP_FLOOD
    
            actions = [parser.OFPActionOutput(out_port)]
    
            # install a flow to avoid packet_in next time
            if out_port != ofproto.OFPP_FLOOD:
                match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src)
                # verify if we have a valid buffer_id, if yes avoid to send both
                # flow_mod & packet_out
                if msg.buffer_id != ofproto.OFP_NO_BUFFER:
    	    #buffer_id不为None,控制器只需下发流表的命令,交换机增加了流表项后,位于缓冲区的数据包会自动转发出去。
                    self.add_flow(datapath, 1, match, actions, msg.buffer_id)
                    return
                else:
    	    #buffer_id为None,那么控制器不仅要更改交换机的流表项,
                    self.add_flow(datapath, 1, match, actions)
                #还要把数据包的信息传给交换机,让交换机把数据包转发出去。
            data = None
            if msg.buffer_id == ofproto.OFP_NO_BUFFER:
                data = msg.data
     
            out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,
                                      in_port=in_port, actions=actions, data=data)
            datapath.send_msg(out)
    
    

    a) 代码当中的mac_to_port的作用是什么?

    mac_to_port是mac地址映射到转发端口的字典,可用于交换机自学习。

    b) simple_switch和simple_switch_13在dpid的输出上有何不同?

    差别在于:simple_switch直接输出dpid,而simple_switch_13则在dpid前端填充0直至满16位

    #simple_switch.py
            dpid = datapath.id
    #################################
    #simple_switch_13.py
            dpid = format(datapath.id, "d").zfill(16)
    
    

    c) 相比simple_switch,simple_switch_13增加的switch_feature_handler实现了什么功能?

    实现了交换机以特性应答消息来响应特性请求的功能

    d) simple_switch_13是如何实现流规则下发的?

    在接收到packetin事件后,首先获取包学习,交换机信息,以太网信息,协议信息等。若以太网类型是LLDP类型,则不予处理。如果不是,则获取源端口的目的端口和交换机id,先学习源地址对应的交换机的入端口,再查看是否已经学习目的mac地址,如果没有则进行洪泛转发。如果学习过该mac地址,则查看是否有buffer_id,如果有的话,则在添加流表信息时加上buffer_id,向交换机发送流表。

    e) switch_features_handler和_packet_in_handler两个事件在发送流规则的优先级上有何不同?

    switch_features_handler下发流表的优先级比_packet_in_handler的优先级高。

  2. 编程实现和ODL实验的一样的硬超时功能。

    • 代码

      # Copyright (C) 2011 Nippon Telegraph and Telephone Corporation.
      #
      # Licensed under the Apache License, Version 2.0 (the "License");
      # you may not use this file except in compliance with the License.
      # You may obtain a copy of the License at
      #
      #    http://www.apache.org/licenses/LICENSE-2.0
      #
      # Unless required by applicable law or agreed to in writing, software
      # distributed under the License is distributed on an "AS IS" BASIS,
      # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
      # implied.
      # See the License for the specific language governing permissions and
      # limitations under the License.
      
      from ryu.base import app_manager
      from ryu.controller import ofp_event
      from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER
      from ryu.controller.handler import set_ev_cls
      from ryu.ofproto import ofproto_v1_3
      from ryu.lib.packet import packet
      from ryu.lib.packet import ethernet
      from ryu.lib.packet import ether_types
      
      
      class SimpleSwitch13(app_manager.RyuApp):
          OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]
      
          def __init__(self, *args, **kwargs):
              super(SimpleSwitch13, self).__init__(*args, **kwargs)
              self.mac_to_port = {}
      
          @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
          def switch_features_handler(self, ev):
              datapath = ev.msg.datapath
              ofproto = datapath.ofproto
              parser = datapath.ofproto_parser
      
              # install table-miss flow entry
              #
              # We specify NO BUFFER to max_len of the output action due to
              # OVS bug. At this moment, if we specify a lesser number, e.g.,
              # 128, OVS will send Packet-In with invalid buffer_id and
              # truncated packet data. In that case, we cannot output packets
              # correctly.  The bug has been fixed in OVS v2.1.0.
              match = parser.OFPMatch()
              actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,
                                                ofproto.OFPCML_NO_BUFFER)]
              self.add_flow(datapath, 0, match, actions)
      
          def add_flow(self, datapath, priority, match, actions, buffer_id=None, hard_timeout=0):
              ofproto = datapath.ofproto
              parser = datapath.ofproto_parser
      
              inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,
                                                   actions)]
              if buffer_id:
                  mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id,
                                          priority=priority, match=match,
                                          instructions=inst, hard_timeout=hard_timeout)
              else:
                  mod = parser.OFPFlowMod(datapath=datapath, priority=priority,
                                          match=match, instructions=inst, hard_timeout=hard_timeout)
              datapath.send_msg(mod)
      
          @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
          def _packet_in_handler(self, ev):
              # If you hit this you might want to increase
              # the "miss_send_length" of your switch
              if ev.msg.msg_len < ev.msg.total_len:
                  self.logger.debug("packet truncated: only %s of %s bytes",
                                    ev.msg.msg_len, ev.msg.total_len)
              msg = ev.msg
              datapath = msg.datapath
              ofproto = datapath.ofproto
              parser = datapath.ofproto_parser
              in_port = msg.match['in_port']
      
              pkt = packet.Packet(msg.data)
              eth = pkt.get_protocols(ethernet.ethernet)[0]
      
              if eth.ethertype == ether_types.ETH_TYPE_LLDP:
                  # ignore lldp packet
                  return
              dst = eth.dst
              src = eth.src
      
              dpid = format(datapath.id, "d").zfill(16)
              self.mac_to_port.setdefault(dpid, {})
      
              self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port)
      
              # learn a mac address to avoid FLOOD next time.
              self.mac_to_port[dpid][src] = in_port
      
              if dst in self.mac_to_port[dpid]:
                  out_port = self.mac_to_port[dpid][dst]
              else:
                  out_port = ofproto.OFPP_FLOOD
      
              actions = [parser.OFPActionOutput(out_port)]\
      
              actions_timeout=[]
      
              # install a flow to avoid packet_in next time
              if out_port != ofproto.OFPP_FLOOD:
                  match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src)
                  # verify if we have a valid buffer_id, if yes avoid to send both
                  # flow_mod & packet_out
                  hard_timeout=10
                  if msg.buffer_id != ofproto.OFP_NO_BUFFER:
                      self.add_flow(datapath, 2, match,actions_timeout, msg.buffer_id,hard_timeout=10)
                      self.add_flow(datapath, 1, match, actions, msg.buffer_id)
                      return
                  else:
                      self.add_flow(datapath, 2, match, actions_timeout, hard_timeout=10)
                      self.add_flow(datapath, 1, match, actions)
              data = None
              if msg.buffer_id == ofproto.OFP_NO_BUFFER:
                  data = msg.data
      
              out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,
                                        in_port=in_port, actions=actions, data=data)
              datapath.send_msg(out)
      
      
    • 建立拓扑

    sudo mn --topo=single,3 --mac --controller=remote,ip=127.0.0.1,port=6633 --switch ovsk

    • 运行ryu-manager timeout.py

    • h1 ping h2
      image

    • 查看流表 dpctl dump-flows
      image

个人总结

在本次实验中,通过阅读RYU文档并查看相关模块的源代码,了解了RYU控制器的工作原理,并比较了RYU的L2Switch模块与POX的Hub模块的异同。本次的实验基础部分难度较低,最开始安装RYU时,基本上根据老师的实验指导书一步一步来,即可顺利完成,同时实验操作与前两次操作ODL和POX控制器差不多,因此能较为快速地完成对应步骤,而进阶部分则难度较大,尤其在阅读源码部分进度较慢。不过,虽然阅读源码的过程有些痛苦,但在过程中,查阅相关材料,结合源码进行阅读,也使得我对RYU的控制机制有了更为形象和深入的认识

标签:控制器,self,parser,datapath,msg,开源,ofproto,RYU,port
From: https://www.cnblogs.com/wojiuyishui/p/16802263.html

相关文章

  • 一文读懂:开源大数据调度系统Taier1.2版本新增的「工作流」到底是什么?
    一、什么是工作流?在阐述什么是工作流之前,先说一下工作流和普通任务的区别,在于依赖视图。普通任务本身他只会有自己的dag图,依赖视图是无边界的,不可控的,而工作流则是把整个......
  • Kubernetes 控制器管理器的工作原理
    在KubernetesMaster节点中,有三个重要的组件:ApiServer、ControllerManager和Scheduler,它们共同负责整个集群的管理。在本文中,我们尝试梳理一下ControllerManager的工作......
  • 实验6:开源控制器实践——RYU
    实验6:开源控制器实践——RYU(一)基本要求搭建下图所示SDN拓扑,协议使用OpenFlow1.0,并连接Ryu控制器,通过Ryu的图形界面查看网络拓扑阅读Ryu文档的TheFirstApplica......
  • 实验5:开源控制器实践——POX
    实验5:开源控制器实践——POX一、实验目的能够理解POX控制器的工作原理;通过验证POX的forwarding.hub和forwarding.l2_learning模块,初步掌握POX控制器的使用方法;够运......
  • 实验5:开源控制器实践——POX
    一、实验目的能够理解POX控制器的工作原理;通过验证POX的forwarding.hub和forwarding.l2_learning模块,初步掌握POX控制器的使用方法;能够运用POX控制器编写自定义网络......
  • 实验6:开源控制器实践——RYU
    实验6:开源控制器实践——RYU一、基本要求1.搭建下图所示SDN拓扑,协议使用OpenFlow1.0,并连接Ryu控制器,通过Ryu的图形界面查看网络拓扑。建立拓扑并连接Ryu控制器,浏览......
  • 开源WindivertDotnet
    0前言Hi,好久没有写博客,因为近段时间没有新的开源项目给大家。现在终于又写了一篇,是关于网络方向的内容,希望对部分读者有帮助。1WinDivert介绍WinDivert是windows下为......
  • 实验6:开源控制器实践——RYU
    实验目的能够独立部署RYU控制器;能够理解RYU控制器实现软件定义的集线器原理;能够理解RYU控制器实现软件定义的交换机原理。实验要求(一)基本要求搭建下图所示SDN拓扑,协......
  • 实验6:开源控制器实践——RYU
    一、实验目的1.能够独立部署RYU控制器;2.能够理解RYU控制器实现软件定义的集线器原理;3.能够理解RYU控制器实现软件定义的交换机原理。二、实验环境Ubuntu20.04Deskto......
  • 实验5:开源控制器实践——POX
    一、实验目的能够理解POX控制器的工作原理;通过验证POX的forwarding.hub和forwarding.l2_learning模块,初步掌握POX控制器的使用方法;能够运用POX控制器编写自定义网......