实验6:开源控制器实践——RYU
一、基本要求
1. 搭建下图所示SDN拓扑,协议使用Open Flow 1.0,并连接Ryu控制器,通过Ryu的图形界面查看网络拓扑。
- 建立拓扑并连接Ryu控制器,浏览器输入
127.0.0.1:8080
在Ryu的图形界面查看网络拓扑
2. 阅读Ryu文档的The First Application一节,运行当中的L2Switch,h1 ping h2或h3,在目标主机使用 tcpdump 验证L2Switch,分析L2Switch和POX的Hub模块有何不同。
- L2Switch.py
查看代码
from ryu.base import app_manager from ryu.controller import ofp_event from ryu.controller.handler import MAIN_DISPATCHER from ryu.controller.handler import set_ev_cls from ryu.ofproto import ofproto_v1_0
class L2Switch(app_manager.RyuApp):
OFP_VERSIONS = [ofproto_v1_0.OFP_VERSION]def __init__(self, *args, **kwargs): super(L2Switch, self).__init__(*args, **kwargs) @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER) def packet_in_handler(self, ev): msg = ev.msg dp = msg.datapath ofp = dp.ofproto ofp_parser = dp.ofproto_parser actions = [ofp_parser.OFPActionOutput(ofp.OFPP_FLOOD)] data = None if msg.buffer_id == ofp.OFP_NO_BUFFER: data = msg.data out = ofp_parser.OFPPacketOut( datapath=dp, buffer_id=msg.buffer_id, in_port=msg.in_port, actions=actions, data = data) dp.send_msg(out)
- 运行L2Switch,h1 ping h2、h3, 在h2、h3分别使用
tcpdump -nn -i h2-etho
和tcpdump -nn -i h3-etho
验证L2Switch
- 分析L2Switch和POX的Hub模块有何不同
Hub和L2Switch模块都是洪泛转发,但L2Switch模块下发的流表无法查看,而Hub模块下发的流表可以查看
3. 编程修改L2Switch.py,另存为L2032002530.py,使之和POX的Hub模块的变得一致
- L2032002530.py
查看代码
from ryu.base import app_manager from ryu.ofproto import ofproto_v1_3 from ryu.controller import ofp_event from ryu.controller.handler import MAIN_DISPATCHER, CONFIG_DISPATCHER from ryu.controller.handler import set_ev_cls
class hub(app_manager.RyuApp):
OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]def __init__(self, *args, **kwargs): super(hub, self).__init__(*args, **kwargs) @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER) def switch_feathers_handler(self, ev): datapath = ev.msg.datapath ofproto = datapath.ofproto ofp_parser = datapath.ofproto_parser # install flow table-miss flow entry match = ofp_parser.OFPMatch() actions = [ofp_parser.OFPActionOutput(ofproto.OFPP_CONTROLLER, ofproto.OFPCML_NO_BUFFER)] # 1\OUTPUT PORT, 2\BUFF IN SWITCH? self.add_flow(datapath, 0, match, actions) def add_flow(self, datapath, priority, match, actions): # 1\ datapath for the switch, 2\priority for flow entry, 3\match field, 4\action for packet ofproto = datapath.ofproto ofp_parser = datapath.ofproto_parser # install flow inst = [ofp_parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, actions)] mod = ofp_parser.OFPFlowMod(datapath=datapath, priority=priority, match=match, instructions=inst) datapath.send_msg(mod) @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER) def packet_in_handler(self, ev): msg = ev.msg datapath = msg.datapath ofproto = datapath.ofproto ofp_parser = datapath.ofproto_parser in_port = msg.match['in_port'] # get in port of the packet # add a flow entry for the packet match = ofp_parser.OFPMatch() actions = [ofp_parser.OFPActionOutput(ofproto.OFPP_FLOOD)] self.add_flow(datapath, 1, match, actions) # to output the current packet. for install rules only output later packets out = ofp_parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id, in_port=in_port, actions=actions) # buffer id: locate the buffered packet datapath.send_msg(out)
- 查看流表
二、进阶要求
1. 阅读Ryu关于simple_switch.py和simple_switch_1x.py的实现,以simple_switch_13.py为例,完成其代码的注释工作,并回答问题
- simple_switch_13.py
查看代码
from ryu.base import app_manager from ryu.controller import ofp_event from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER from ryu.controller.handler import set_ev_cls from ryu.ofproto import ofproto_v1_3 from ryu.lib.packet import packet from ryu.lib.packet import ethernet from ryu.lib.packet import ether_types
class SimpleSwitch13(app_manager.RyuApp):
OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION] # OpenFlow1.3版本def __init__(self, *args, **kwargs): super(SimpleSwitch13, self).__init__(*args, **kwargs) self.mac_to_port = {} # 保存(交换机id, mac地址)到转发端口的字典 # 处理SwitchFeatures事件 @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER) def switch_features_handler(self, ev): datapath = ev.msg.datapath # 存储交换机的信息 ofproto = datapath.ofproto parser = datapath.ofproto_parser # 安装 table-miss 流条目 match = parser.OFPMatch() # match指流表项匹配,OFPMatch()指不匹配任何信息 actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER, ofproto.OFPCML_NO_BUFFER)] # actions为相应动作,若匹配成功则不缓存数据包,同时将数据包发送给控制器 self.add_flow(datapath, 0, match, actions) # 通过add_flow添加流表项,add_flow调用了send_msg(mod)下发流表。 # 增加流表项 def add_flow(self, datapath, priority, match, actions, buffer_id=None): # 获取交换机信息 ofproto = datapath.ofproto parser = datapath.ofproto_parser # 对action进行封装 inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, actions)] # 判断是否存在buffer_id,并生成mod对象 if buffer_id: mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id, priority=priority, match=match, instructions=inst) else: mod = parser.OFPFlowMod(datapath=datapath, priority=priority, match=match, instructions=inst) # 下发流表 datapath.send_msg(mod) # 控制器在MAIN_DISPATCHER状态并且触发Packet_In事件,调用_packet_in_handler函数 @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER) def _packet_in_handler(self, ev): # If you hit this you might want to increase # the "miss_send_length" of your switch if ev.msg.msg_len < ev.msg.total_len: # 传输出错,打印debug信息 self.logger.debug("packet truncated: only %s of %s bytes", ev.msg.msg_len, ev.msg.total_len) # 解析数据结构 msg = ev.msg # ev.msg指packet_in data structure对象 datapath = msg.datapath # dp. ofproto 和 dp.ofproto_parser 为代表 Ryu 和交换机进行谈判的 OpenFlow 协议对象 ofproto = datapath.ofproto parser = datapath.ofproto_parser in_port = msg.match['in_port'] # 获取源端口 pkt = packet.Packet(msg.data) eth = pkt.get_protocols(ethernet.ethernet)[0] if eth.ethertype == ether_types.ETH_TYPE_LLDP: # 忽略LLDP类型的数据包 return dst = eth.dst # 目的端口 src = eth.src # 源端口 dpid = format(datapath.id, "d").zfill(16) self.mac_to_port.setdefault(dpid, {}) self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port) # 学习一个mac地址,下次避免FLOOD。 self.mac_to_port[dpid][src] = in_port # 交换机自学习,取来往数据包的交换机id、源mac和入端口绑定来构造表。 # 查看是否已经学习过该目的mac地址 if dst in self.mac_to_port[dpid]: # 若在表中找到出端口信息,指示出端口 out_port = self.mac_to_port[dpid][dst] # 否则,洪泛 else: out_port = ofproto.OFPP_FLOOD actions = [parser.OFPActionOutput(out_port)] # 安装一个流以避免下次packet_in if out_port != ofproto.OFPP_FLOOD: match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src) # 验证我们是否有一个有效的 buffer_id # 如果是,则避免同时发送 flow_mod 和 packet_out if msg.buffer_id != ofproto.OFP_NO_BUFFER: # 如果有buffer_id,则带上buffer_id,然后只发送Flow_mod报文,因为交换机已经有缓存数据包,就不需要发送packet_out报文 self.add_flow(datapath, 1, match, actions, msg.buffer_id) return else: self.add_flow(datapath, 1, match, actions) # 若没有buffer_id,则发送的Flow_Mod报文就无需要带上buffer_id,但是下一步要再发送一个packet_out报文带上原数据包信息。 data = None if msg.buffer_id == ofproto.OFP_NO_BUFFER: data = msg.data # 发送Packet_out数据包 带上交换机发来的数据包的信息 out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id, in_port=in_port, actions=actions, data=data) # 发送流表 datapath.send_msg(out)
a) 代码当中的mac_to_port的作用是什么?
保存
mac地址
到交换机端口
的映射
b) simple_switch和simple_switch_13在dpid的输出上有何不同?
在
simple_switch_13.py
中为dpid = format(datapath.id,"d").zfill(16)
在simple_switch.py
中为dpid = datapath.id
可以看到simple_switch_13
中dpid
的输出格式为:用0
在dpid
前填充至总长度为16
,而simple_switch
直接输出dpid
c) 相比simple_switch,simple_switch_13增加的switch_feature_handler实现了什么功能?
switch_feature_handler
实现了交换机以特性应答消息来响应特性请求的功能
d) simple_switch_13是如何实现流规则下发的?
在触发
PacketIn
事件后,首先解析相关数据结构,获取协议信息、获取源端口、包学习,交换机信息,以太网信息等。如果以太网类型是LLDP
类型,则忽略。如果不是LLDP
类型,则获取目的端口和源端口还有交换机的id
,然后进行交换机自学习,先学习源地址对应的交换机的入端口,再查看是否已经学习目的mac地址
,如果没有就洪泛转发。如果学习过,则查看是否有buffer_id
,如果有则在添加流时加上buffer_id
,向交换机发送数据包和流表。
e) switch_features_handler和_packet_in_handler两个事件在发送流规则的优先级上有何不同?
switch_features_handler
下发流表的优先级比_packet_in_handler
高
2.编程实现和ODL实验的一样的硬超时功能
- TimeOut.py
from ryu.base import app_manager from ryu.controller import ofp_event from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER from ryu.controller.handler import set_ev_cls from ryu.ofproto import ofproto_v1_3 from ryu.lib.packet import packet from ryu.lib.packet import ethernet from ryu.lib.packet import ether_types
class SimpleSwitch13(app_manager.RyuApp):
OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]def __init__(self, *args, **kwargs): super(SimpleSwitch13, self).__init__(*args, **kwargs) self.mac_to_port = {} @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER) def switch_features_handler(self, ev): datapath = ev.msg.datapath ofproto = datapath.ofproto parser = datapath.ofproto_parser match = parser.OFPMatch() actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER, ofproto.OFPCML_NO_BUFFER)] self.add_flow(datapath, 0, match, actions) def add_flow(self, datapath, priority, match, actions, buffer_id=None, hard_timeout=0): ofproto = datapath.ofproto parser = datapath.ofproto_parser inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, actions)] if buffer_id: mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id, priority=priority, match=match, instructions=inst, hard_timeout=hard_timeout) else: mod = parser.OFPFlowMod(datapath=datapath, priority=priority, match=match, instructions=inst, hard_timeout=hard_timeout) datapath.send_msg(mod) @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER) def _packet_in_handler(self, ev): if ev.msg.msg_len < ev.msg.total_len: self.logger.debug("packet truncated: only %s of %s bytes", ev.msg.msg_len, ev.msg.total_len) msg = ev.msg datapath = msg.datapath ofproto = datapath.ofproto parser = datapath.ofproto_parser in_port = msg.match['in_port'] pkt = packet.Packet(msg.data) eth = pkt.get_protocols(ethernet.ethernet)[0] if eth.ethertype == ether_types.ETH_TYPE_LLDP: return dst = eth.dst src = eth.src dpid = format(datapath.id, "d").zfill(16) self.mac_to_port.setdefault(dpid, {}) self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port) self.mac_to_port[dpid][src] = in_port if dst in self.mac_to_port[dpid]: out_port = self.mac_to_port[dpid][dst] else: out_port = ofproto.OFPP_FLOOD actions = [parser.OFPActionOutput(out_port)]\ actions_timeout=[] if out_port != ofproto.OFPP_FLOOD: match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src) hard_timeout=10 if msg.buffer_id != ofproto.OFP_NO_BUFFER: self.add_flow(datapath, 2, match,actions_timeout, msg.buffer_id,hard_timeout=10) self.add_flow(datapath, 1, match, actions, msg.buffer_id) return else: self.add_flow(datapath, 2, match, actions_timeout, hard_timeout=10) self.add_flow(datapath, 1, match, actions) data = None if msg.buffer_id == ofproto.OFP_NO_BUFFER: data = msg.data out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id, in_port=in_port, actions=actions, data=data) datapath.send_msg(out)
三、个人总结
1. 实验难度
本次的实验难度适中,跟着实验指导书一步一步做,基本上都能够较顺利的完成。
2. 实验过程遇到的困难及解决办法
一开始不知道如何利用Ryu的图形界面查看拓扑,在阅读Ryu相关文件后,才知道在本地浏览器输入"127.0.0.1:8080"即可访问Ryu的图形界面
3. 个人感想
本次实验的难度集中在了对代码的理解和编写上,只有真正理解了Ryu里面定义的数据结构以及一系列函数体后,才能够顺利的进行代码的修改与编写。通过本次实验,深入理解了RYU控制器实现软件定义的集线器原理以及RYU控制器实现软件定义的交换机原理。
Ryu的数据平面是由若干网元(Network Element)组成,每个网元包含一个或多个SDN数据路径(SDN Datapath)。SDN Datapath是逻辑上的网络设备,负责转发和处理数据无控制能力,一个SDN DataPath包含控制数据平面接口(Control Data Plane Interface,CDPI)、代理、转发引擎(Forwarding Engine)表和处理功能(Processing Function)SDN数据面(转发面)的关键技术:对数据面进行抽象建模。
OpenFlow交换器会接受来自于controller的指令并达到下列功能:
- 对于接收到的封包进行修改或针对指定的端口进行转发。
- 对于接收到的封包进行转发到Controller的动作(Packet-In)。
- 对于接收到的来自Controller的封包转送到指定端口(Packet-out)。
利用Packet-in功能达到Mac地址的学习。Controller使用Packet-In接受来自交换机的封包后进行分析,得到连接端口相关的资料和所连接的host的Mac地址。学习之后,将封包的目的地址,在已经学习的host资料中进行检索,根据检索结果进行以下处理: - 如果是已经存在在记录中的host:使用packet-out功能转发到所对应的连接端口。
- 如果是尚未存在记录的host:使用packet-out功能来达到Flooding。
在本次实验当中,也认识并验证了Ryu的L2Switch模块与POX的Hub模块之间的异同