一.基础要求只需要提交h1 ping h2、h2和h3的tcpdump抓包结果截图,外加L2_learning模块代码流程图,其余文字请勿赘述;
1.使用命令创建拓扑:
sudo mn --topo=single,3 --mac --controller=remote,ip=127.0.0.1,port=6633 --switch ovsk,protocols=OpenFlow10
2.Hub模块
1)开启pox
./pox.py log.level --DEBUG forwarding.hub
2)开启主机终端
mininet> xterm h2 h3
3)抓取数据包
h2主机终端:tcpdump -nn -i h2-eth0
h3主机终端:tcpdump -nn -i h3-eth0
4)h1 ping h2的tcpdump抓包结果截图
由上述实验结果可以看出,h1 ping h2,h2和h3都能同时接收到数据包,结果符合Hub模块的作用:在每个交换机上安装泛洪通配符规则,将数据包广播转发,此时交换机等效于集线器
3.Switch模块
1)停止hub模块,运行forwarding文件夹下的 l2_learning 模块
·h1 ping h2的抓包结果截图
h1 ping h2时,只有h2能收到icmp报文,当h1 ping 其他主机时,只有相应主机可以接收到数据包,验证了switch模块的功能:让Openflow交换机实现L2自学习,可见交换机对数据包进行了学习,实现从相应的端口发出,只有目的主机可以抓取到报文
2)L2_learning模块代码流程图
二.进阶要求为选做,有完成的同学请提交相关代码和运行结果,以及ovs-ofctl交换机流表项截图,代码保存目录同要求2,形式不限,有完成比未完成的上机分数更高。
1.重新搭建(一)的拓扑,此时交换机内无流表规则,拓扑内主机互不相通;编写Python程序自定义一个POX模块SendFlowInSingle3,并且将拓扑连接至SendFlowInSingle3(默认端口6633),实现向s1发送流表规则使得所有主机两两互通。
搭建拓扑后,清除流表
dpctl del-flows
测试连通性
创建文件SendFlowInSingle3.py
点击查看代码
from pox.core import core
import pox.openflow.libopenflow_01 as of
from pox.openflow.of_json import *
def _handle_ConnectionUp(event):
msg = of.ofp_flow_mod()
msg.priority = 1
msg.match.in_port = 1
msg.actions.append(of.ofp_action_output(port=2))
msg.actions.append(of.ofp_action_output(port=3))
event.connection.send(msg)
msg = of.ofp_flow_mod()
msg.priority = 1
msg.match.in_port = 2
msg.actions.append(of.ofp_action_output(port=1))
msg.actions.append(of.ofp_action_output(port=3))
event.connection.send(msg)
msg = of.ofp_flow_mod()
msg.priority = 1
msg.match.in_port = 3
msg.actions.append(of.ofp_action_output(port=1))
msg.actions.append(of.ofp_action_output(port=2))
event.connection.send(msg)
def launch():
core.openflow.addListenerByName("ConnectionUp", _handle_ConnectionUp)
创建文件SendPoxHardTimeOut.py
点击查看代码
from pox.core import core
import pox.openflow.libopenflow_01 as of
class SendPoxHardTimeOut(object):
def __init__(self):
core.openflow.addListeners(self)
def _handle_ConnectionUp(self, event):
msg = of.ofp_flow_mod()
msg.priority = 3
msg.match.in_port = 1
msg.hard_timeout = 10 #硬超时10秒
event.connection.send(msg)
msg = of.ofp_flow_mod()
msg.priority = 1
msg.match.in_port = 1
msg.actions.append(of.ofp_action_output(port = of.OFPP_ALL))
event.connection.send(msg)
msg = of.ofp_flow_mod()
msg.priority = 3
msg.match.in_port = 3
msg.hard_timeout = 10 #硬超时10秒
event.connection.send(msg)
msg = of.ofp_flow_mod()
msg.priority = 1
msg.match.in_port = 3
msg.actions.append(of.ofp_action_output(port = of.OFPP_ALL))
event.connection.send(msg)
def launch():
core.registerNew(SendPoxHardTimeOut)
测试连通性
查看流表项
完成ODL实验的硬超时功能。
先运行SendFlowSingle3,再运行SendPoxHardTimeOut
直接运行SendPoxHardTimeOut
三.个人总结,包括但不限于实验难度、实验过程遇到的困难及解决办法,个人感想,不少于200字。
通过本次实验能够理解pox控制器的工作原理,根据老师提供的资料验证了pox的forwarding.hub和forwarding.l2_learning模块,初步掌握了pox控制器的使用方法。并且能运用pox控制器编写自定义网络应用程序,进一步熟悉了pox控制器是如何进行流表的下发。在对比hub模块和switch模块中,学到了switch模块的功能是让Openflow交换机实现L2自学习,可见交换机对数据包进行了学习,实现了从相应的端口发出,只有目的主机可以抓取到报文。而hub模块是在每个交换机上安装泛洪通配符规则,将数据包以广播形式转发,此时交换机等效于集线器。