首页 > 其他分享 >实验6:开源控制器实践——RYU

实验6:开源控制器实践——RYU

时间:2022-10-16 21:12:01浏览次数:59  
标签:控制器 ryu parser 开源 datapath ofp switch ofproto RYU

实验目的

能够独立部署RYU控制器;
能够理解RYU控制器实现软件定义的集线器原理;
能够理解RYU控制器实现软件定义的交换机原理。

实验要求

(一)基本要求

  • 搭建下图所示SDN拓扑,协议使用Open Flow 1.0,并连接Ryu控制器,通过Ryu的图形界面查看网络拓扑。

  • 建立拓扑

sudo mn --topo=single,3 --mac --controller=remote,ip=127.0.0.1,port=6633 --switch ovsk

  • 连接Ryu控制器

  • 通过Ryu的图形界面查看网络拓扑
    在浏览器中输入地址http://127.0.0.1:8080即可打开ryu的图形界面

  • 阅读Ryu文档的The First Application一节,运行当中的L2Switch,h1 ping h2或h3,在目标主机使用 tcpdump 验证L2Switch,分析L2Switch和POX的Hub模块有何不同。

  • 创建L2Switch文件并添加代码

  • 运行L2Switch ryu-manager L2Switch.py

    pingall可以ping通

  • 开启主机终端 mininet>xterm h2 h3

  • 在h2主机终端中输入tcpdump -nn -i h2-eth0

  • 在h3主机终端中输入tcpdump -nn -i h3-eth0

  • h1 ping h2

  • h1 ping h3

  • 分析L2Switch和POX的Hub模块有何不同
    Hub和L2Switch模块都是洪泛转发,但L2Switch模块下发的流表无法查看,而Hub模块下发的流表可以查看
    编程修改L2Switch.py,另存为L2xxxxxxxxx.py,使之和POX的Hub模块的变得一致
  • 代码
from ryu.base import app_manager
from ryu.ofproto import ofproto_v1_3
from ryu.controller import ofp_event
from ryu.controller.handler import MAIN_DISPATCHER, CONFIG_DISPATCHER
from ryu.controller.handler import set_ev_cls
 
 
class hub(app_manager.RyuApp):
    OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]
 
    def __init__(self, *args, **kwargs):
        super(hub, self).__init__(*args, **kwargs)
 
    @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
    def switch_feathers_handler(self, ev):
        datapath = ev.msg.datapath
        ofproto = datapath.ofproto
        ofp_parser = datapath.ofproto_parser
 
        # install flow table-miss flow entry
        match = ofp_parser.OFPMatch()
        actions = [ofp_parser.OFPActionOutput(ofproto.OFPP_CONTROLLER, ofproto.OFPCML_NO_BUFFER)]
        # 1\OUTPUT PORT, 2\BUFF IN SWITCH?
        self.add_flow(datapath, 0, match, actions)
 
    def add_flow(self, datapath, priority, match, actions):
        # 1\ datapath for the switch, 2\priority for flow entry, 3\match field, 4\action for packet
        ofproto = datapath.ofproto
        ofp_parser = datapath.ofproto_parser
        # install flow
        inst = [ofp_parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, actions)]
        mod = ofp_parser.OFPFlowMod(datapath=datapath, priority=priority, match=match, instructions=inst)
        datapath.send_msg(mod)
 
    @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
    def packet_in_handler(self, ev):
        msg = ev.msg
        datapath = msg.datapath
        ofproto = datapath.ofproto
        ofp_parser = datapath.ofproto_parser
        in_port = msg.match['in_port']  # get in port of the packet
 
        # add a flow entry for the packet
        match = ofp_parser.OFPMatch()
        actions = [ofp_parser.OFPActionOutput(ofproto.OFPP_FLOOD)]
        self.add_flow(datapath, 1, match, actions)
 
        # to output the current packet. for install rules only output later packets
        out = ofp_parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id, in_port=in_port, actions=actions)
        # buffer id: locate the buffered packet
        datapath.send_msg(out)
  • 运行结果:

(二)进阶要求

  • 阅读Ryu关于simple_switch.py和simple_switch_1x.py的实现,以simple_switch_13.py为例,完成其代码的注释工作,并回答下列问题:
  a) 代码当中的mac_to_port的作用是什么?

  mac_to_port的作用是保存mac地址到交换机端口的映射
  b) simple_switch和simple_switch_13在dpid的输出上有何不同?
  在simple_switch_13.py中为dpid = format(datapath.id, "d").zfill(16)
  在simple_switch.py中为dpid = datapath.id
  在simple_switch_13.py中使用了zfill() 方法返回指定长度为16的字符串,原字符串右对齐,前面填充0;而simple_switch.py直接输出dpid
  c) 相比simple_switch,simple_switch_13增加的switch_feature_handler实现了什么功能?
  增加了实现交换机以特性应答消息响应特性请求功能
  d) simple_switch_13是如何实现流规则下发的?
  在触发PacketIn事件后,首先解析相关数据结构,获取协议信息、获取源端口、包学习,交换机信息,以太网信息,等。如果以太网类型是LLDP类型,则忽略。如果不是LLDP类型,则获取目的端口和源端口还有交换机id,然后进行交换机自学习,先学习源地址对应的交换机的入端口,再查看是否已经学习目的mac地址,如果没有就洪泛转发。如果学习过,则查看是否有buffer_id,如果有则在添加流时加上buffer_id,向交换机发送数据包和流表。
  e) switch_features_handler和_packet_in_handler两个事件在发送流规则的优先级上有何不同?
  switch_features_handler下发流表的优先级比_packet_in_handler高
  编程实现和ODL实验的一样的硬超时功能。
  • 代码 MyTimeOut.py

  • 建立拓扑 sudo mn --topo=single,3 --mac --controller=remote,ip=127.0.0.1,port=6633 --switch ovsk

  • 运行 ryu-manager MyTimeOut.py

  • h1 ping h2

  • 查看流表 dpctl dump-flows

个人总结

本次实验用到了 mininet 和 ryu 的相关知识。通过本次实验我更进一步的掌握了 mininet 的使用和分析,也掌握了 ryu 的基础使用。通过对比上次实验所用到的 pox 和本次实验用到的 ryu,我对 mininet 控制流表下发和硬超时有了更加深刻的理解。
遇到的问题,之前的 mininet 资源没有清空,导致可视化界面展示的与预期不符,最后使用 mm -c 清除了之前残余数据后显示正常。在使用 ryu 的时候没有保证运行的唯一性,导致配置不成功,pingall 无法 ping 通,在关闭了其他无用 ryu 端口后成功运行当前期望运行项目。
通过本次实验学到了 ryu 的基本使用方法,也加深了对 mininet 使用和原理的认知,同时也增强了我解决问题的方法。收获满满。

标签:控制器,ryu,parser,开源,datapath,ofp,switch,ofproto,RYU
From: https://www.cnblogs.com/Xuuxxi/p/16797162.html

相关文章

  • 实验5:开源控制器实践——POX
    基本要求1.搭建下图所示SDN拓扑,协议使用OpenFlow1.0,控制器使用部署于本地的POX(默认监听6633端口)搭建topo结构sudomn--topo=single,3--mac--controller=remote,ip......
  • 实验4:开源控制器实践——OpenDaylight
    实验4:开源控制器实践——OpenDaylight一、实验目的能够独立完成OpenDaylight控制器的安装配置;能够使用Postman工具调用OpenDaylightAPI接口下发流表。二、实验环境Ubu......
  • 实验6:开源控制器实践——RYU
    基本要求1.搭建下图所示SDN拓扑,协议使用OpenFlow1.0,并连接Ryu控制器,通过Ryu的图形界面查看网络拓扑。2.阅读Ryu文档的TheFirstApplication一节,运行当中的L2Switch......
  • 实验5:开源控制器实践——POX
    实验5:开源控制器实践——POX一、实验目的1.能够理解POX控制器的工作原理;2.通过验证POX的forwarding.hub和forwarding.l2_learning模块,初步掌握POX控制器的使用方法;3.......
  • 实验5:开源控制器实践——POX
    实验5:开源控制器实践——POX一、实验目的能够理解POX控制器的工作原理;通过验证POX的forwarding.hub和forwarding.l2_learning模块,初步掌握POX控制器的使用方法;能够......
  • 实验4:开源控制器实践——OpenDaylight
    实验4:开源控制器实践——OpenDaylight一、实验目的能够独立完成OpenDaylight控制器的安装配置;能够使用Postman工具调用OpenDaylightAPI接口下发流表。二、实验环境Ub......
  • 实验4:开源控制器实践——OpenDaylight
    实验4:开源控制器实践——OpenDaylight一、实验目的1.能够独立完成OpenDaylight控制器的安装配置;2.能够使用Postman工具调用OpenDaylightAPI接口下发流表。二、实验环......
  • 实验5:开源控制器实践——POX
    基础要求实验总结本次实验的难度相较于之前的几次实验要有所提升,本次实验中运用POX控制器,这使得我熟悉了这一控制器的安装方法及其基础使用方法,同时对于在前几......
  • 实验4:开源控制器实践——OpenDaylight
    一、实验目的1.能够独立完成OpenDaylight控制器的安装配置;2.能够使用Postman工具调用OpenDaylightAPI接口下发流表。二、实验环境Ubuntu20.04Desktopamd64三、实......
  • 实验4:开源控制器实践---OpenDaylight
    利用Mininet平台搭建下图所示网络拓扑,并连接OpenDaylight控制器;通过Postman工具调用OpenDaylight提供的API下发流表,实现拓扑内主机h1和h3网络中断10s。......