首页 > 其他分享 >实验5:开源控制器实践——POX

实验5:开源控制器实践——POX

时间:2022-10-16 20:11:59浏览次数:61  
标签:控制器 POX 端口 ofp 开源 设置 msg 数据包 port

基本要求

1. 搭建下图所示SDN拓扑,协议使用Open Flow 1.0,控制器使用部署于本地的POX(默认监听6633端口)

搭建topo结构 sudo mn --topo=single,3 --mac --controller=remote,ip=127.0.0.1,port=6633 --switch ovsk,protocols=OpenFlow10

hub模块 ./pox.py log.level --DEBUG forwarding.hub
uploading-image-396402.png

2. 阅读Hub模块代码,使用 tcpdump 验证Hub模块

抓取端口

h1 ping h2

抓包结果

h1 ping h3

抓包结果

3. 阅读L2_learning模块代码,画出程序流程图,使用 tcpdump 验证Switch模块

L2_learning

switch模块 ./pox.py log.level --DEBUG forwarding.l2_learning

h1 ping h2

h1 ping h3

进阶

重新搭建(一)的拓扑,此时交换机内无流表规则,拓扑内主机互不相通;编写Python程序自定义一个POX模块SendFlowInSingle3,并且将拓扑连接至SendFlowInSingle3(默认端口6633),实现向s1发送流表规则使得所有主机两两互通。
拓扑内主机互不相通

编辑SendFlowInSingle3

from pox.core import core
import pox.openflow.libopenflow_01 as of

class SendFlowInSingle3(object):

   def __init__(self):
          core.openflow.addListeners(self)

   def _handle_ConnectionUp(self, event):

          #设置数据包从端口1进,从端口2和3出
          msg = of.ofp_flow_mod()  # 使用ofp_flow_mod()方法向交换机下发流表
          msg.priority = 1        #设置msg优先级
          msg.match.in_port = 1  #在端口1接收数据包
          msg.actions.append(of.ofp_action_output(port=2))  #设置数据包从端口2转发
          msg.actions.append(of.ofp_action_output(port=3))  # 设置数据包从端口3转发
          event.connection.send(msg) #通过send函数向交换机发送设定的消息


          #设置数据包从端口2进,从端口1和3出
          msg = of.ofp_flow_mod()  # 使用ofp_flow_mod()方法向交换机下发流表
          msg.priority = 1        #设置msg优先级
          msg.match.in_port = 2  # 在端口2接收数据包
          msg.actions.append(of.ofp_action_output(port=1))  # 设置数据包从端口1转发
          msg.actions.append(of.ofp_action_output(port=3))  # 设置数据包从端口3转发
          event.connection.send(msg) #通过send函数向交换机发送设定的消息

          #设置数据包从端口3进,从端口1和2出
          msg = of.ofp_flow_mod()  #使用ofp_flow_mod()方法向交换机下发流表
          msg.priority = 1        #设置msg优先级
          msg.match.in_port = 3  # 使数据包进入端口3
          msg.actions.append(of.ofp_action_output(port=1))  # 设置数据包从端口1转发
          msg.actions.append(of.ofp_action_output(port=2))  # 设置数据包从端口2转发
          event.connection.send(msg)  #通过send函数向交换机发送设定的消息

def launch():
    core.registerNew(SendFlowInSingle3) #注册SendFlowInSingle3组件

将拓扑连接至SendFlowInSingle3


基于进阶1的代码,完成ODL实验的硬超时功能。
编辑SendPoxHardTimeOut

from pox.core import core
import pox.openflow.libopenflow_01 as of

class SendFlowInSingle3(object):

   def __init__(self):
          core.openflow.addListeners(self)

   def _handle_ConnectionUp(self, event):

          #设置数据包从端口1进,从端口2和3出
          msg = of.ofp_flow_mod()  # 使用ofp_flow_mod()方法向交换机下发流表
          msg.priority = 1        #设置msg优先级
          msg.match.in_port = 1  #在端口1接收数据包
          msg.actions.append(of.ofp_action_output(port=2))  #设置数据包从端口2转发
          msg.actions.append(of.ofp_action_output(port=3))  # 设置数据包从端口3转发
          event.connection.send(msg) #通过send函数向交换机发送设定的消息


          #设置数据包从端口2进,从端口1和3出
          msg = of.ofp_flow_mod()  # 使用ofp_flow_mod()方法向交换机下发流表
          msg.priority = 1        #设置msg优先级
          msg.match.in_port = 2  # 在端口2接收数据包
          msg.actions.append(of.ofp_action_output(port=1))  # 设置数据包从端口1转发
          msg.actions.append(of.ofp_action_output(port=3))  # 设置数据包从端口3转发
          event.connection.send(msg) #通过send函数向交换机发送设定的消息

          #设置数据包从端口3进,从端口1和2出
          msg = of.ofp_flow_mod()  #使用ofp_flow_mod()方法向交换机下发流表
          msg.priority = 1        #设置msg优先级
          msg.match.in_port = 3  # 使数据包进入端口3
          msg.actions.append(of.ofp_action_output(port=1))  # 设置数据包从端口1转发
          msg.actions.append(of.ofp_action_output(port=2))  # 设置数据包从端口2转发
          event.connection.send(msg)  #通过send函数向交换机发送设定的消息

def launch():
    core.registerNew(SendFlowInSingle3) #注册SendFlowInSingle3组件

完成ODL实验的硬超时功能

个人总结

协议要要使用Open Flow 1.0
使用XTerm打开主机终端时字体显示过小,需要设置XTrem的配置文件修改字体大小
SendFlowInSingle3/SendPoxHardTimeOut应位于/pox/pox/forwarding目录下
这次实验明显要难于之前的实验,参考了很多大佬的作业

标签:控制器,POX,端口,ofp,开源,设置,msg,数据包,port
From: https://www.cnblogs.com/yangtukang/p/16748048.html

相关文章

  • 实验4:开源控制器实践——OpenDaylight
    实验4:开源控制器实践——OpenDaylight一、实验目的能够独立完成OpenDaylight控制器的安装配置;能够使用Postman工具调用OpenDaylightAPI接口下发流表。二、实验环境Ubu......
  • 实验6:开源控制器实践——RYU
    基本要求1.搭建下图所示SDN拓扑,协议使用OpenFlow1.0,并连接Ryu控制器,通过Ryu的图形界面查看网络拓扑。2.阅读Ryu文档的TheFirstApplication一节,运行当中的L2Switch......
  • 实验5:开源控制器实践——POX
    实验5:开源控制器实践——POX一、实验目的1.能够理解POX控制器的工作原理;2.通过验证POX的forwarding.hub和forwarding.l2_learning模块,初步掌握POX控制器的使用方法;3.......
  • 实验5:开源控制器实践——POX
    实验5:开源控制器实践——POX一、实验目的能够理解POX控制器的工作原理;通过验证POX的forwarding.hub和forwarding.l2_learning模块,初步掌握POX控制器的使用方法;能够......
  • 实验4:开源控制器实践——OpenDaylight
    实验4:开源控制器实践——OpenDaylight一、实验目的能够独立完成OpenDaylight控制器的安装配置;能够使用Postman工具调用OpenDaylightAPI接口下发流表。二、实验环境Ub......
  • 实验4:开源控制器实践——OpenDaylight
    实验4:开源控制器实践——OpenDaylight一、实验目的1.能够独立完成OpenDaylight控制器的安装配置;2.能够使用Postman工具调用OpenDaylightAPI接口下发流表。二、实验环......
  • 实验5:开源控制器实践——POX
    基础要求实验总结本次实验的难度相较于之前的几次实验要有所提升,本次实验中运用POX控制器,这使得我熟悉了这一控制器的安装方法及其基础使用方法,同时对于在前几......
  • 实验4:开源控制器实践——OpenDaylight
    一、实验目的1.能够独立完成OpenDaylight控制器的安装配置;2.能够使用Postman工具调用OpenDaylightAPI接口下发流表。二、实验环境Ubuntu20.04Desktopamd64三、实......
  • 实验4:开源控制器实践---OpenDaylight
    利用Mininet平台搭建下图所示网络拓扑,并连接OpenDaylight控制器;通过Postman工具调用OpenDaylight提供的API下发流表,实现拓扑内主机h1和h3网络中断10s。......
  • 实验4:开源控制器实践——OpenDaylight
    一、实验目的能够独立完成OpenDaylight控制器的安装配置;能够使用Postman工具调用OpenDaylightAPI接口下发流表。二、实验环境Ubuntu20.04Desktopamd64三、实验......