首页 > 其他分享 >YOLOv10最新创新点改进系列:融合最新顶会提出的HCANet网络中卷积和注意力融合模块(CAFM-2024年3月15月开源),有效提升小目标检测性能,大幅度拉升目标检测效果!

YOLOv10最新创新点改进系列:融合最新顶会提出的HCANet网络中卷积和注意力融合模块(CAFM-2024年3月15月开源),有效提升小目标检测性能,大幅度拉升目标检测效果!

时间:2024-05-30 08:59:44浏览次数:45  
标签:__ dim nn 检测 self 融合 最新 bias out

YOLOv10全网最新创新点改进系列:融合最新顶会提出的HCANet网络中卷积和注意力融合模块(CAFM),有效提升小目标检测性能,大幅度拉升目标检测效果!遥遥领先!

YOLOv10全网最新创新点改进系列:融合最新顶会提出的HCANet网络中卷积和注意力融合模块(CAFM-2024年4月开源),有效提升小目标检测性能,大幅度拉升目标检测效果!

所有改进代码均经过实验测试跑通! 此项目不低于30种改进!自己排列组合2-4种后,考虑位置不同后可排列组合上千万种!改进不重样!!专注AI学术,关注B站博主:Ai学术叫叫兽er!

购买相关资料后畅享一对一答疑

# YOLOv10全网最新创新点改进系列:融合最新顶会提出的HCANet网络中卷积和注意力融合模块(CAFM-2024年4月开源),有效提升小目标检测性能,大幅度拉升目标检测效果!


HCANet提出原文戳这!

一、摘要

摘要高光谱图像去噪是高光谱数据有效分析和解释的关键。然而,同时建模全局和局部特征很少被探索以增强HSI去噪。在这封信中,我们提出了一个混合卷积和注意力网络(HCANet),它利用了卷积神经网络(CNN)和变压器的优势。为了增强全局和局部特征的建模,我们设计了一个卷积和注意力融合模块,旨在捕获长程依赖性和邻域光谱相关性。此外,为了改善多尺度信息聚合,我们设计了一个多尺度前馈网络,通过提取不同尺度的特征来提高去噪性能。在主流HSI数据集上的实验结果验证了HCANet的合理性和有效性。该模型能有效去除各种复杂噪声。我们的代码可在https://github.com/summitgao/HCANet上获得。

二、介绍

超光谱成像是一种强大的技术,它可以从物体或场景中获取丰富的光谱信息。与RGB数据相比,高光谱图像(HSI)捕获的光谱信息更精细。因此,HSI已被广泛用于许多实际应用中,例如解混[1]和地物分类[2]。然而,HSI经常受到传感器成像过程中不可避免的混合噪声的困扰,这是由于曝光时间和反射能量不足造成的。这些噪声可能会降低图像质量并妨碍后续分析和解释的性能。消除这些噪声可以提高地面目标检测和分类的准确性。因此,HSI去噪是许多遥感应用中预处理阶段的关键和不可缺少的技术。受HSI的空间和光谱特性的启发,传统的HSI去噪方法利用具有先验的优化方案,例如低秩[3],全变差[4],非局部相似性[5],虽然这些方法已经取得了可观的性能,但它们通常取决于手工先验和真实世界噪声模型之间的相似程度。近年来,卷积神经网络(CNN)[7]为HSI去噪提供了新的思路,表现出显着的性能进步。Maffei等人。[8]提出了一种基于CNN的HSI去噪模型,将噪声水平图作为输入来训练网络。Wang等人。[9]提出了一种基于联合Octave和注意力机制的卷积网络,用于HSI去噪。Pan等人。[10]提出了一种渐进的多尺度信息聚合网络,以消除HSI中的噪声。这些基于CNN的方法使用卷积核进行局部特征建模。最近,随着Vision Transformer(ViT)的出现,基于Transformer的方法在各种计算机视觉任务中取得了重大成功。现有的基于Transformer的图像去噪方法通过学习全局上下文信息取得了很大的成功。然而,如果局部特征被有效地考虑和利用,HSI去噪性能可能会进一步提高。因此,通过结合CNN和Transformers来考虑局部和全局信息以提高去噪性能是很重要的。由于以下两个挑战,为HSI去噪构建有效的Transformer和CNN混合模型通常是不平凡的:1)局部和全局特征建模的最佳混合架构仍然是一个悬而未决的问题。卷积核捕捉局部特征,这意味着失去了长距离的信息交互。卷积和注意力的结合可以提供一个可行的解决方案。2)Transformer中前馈网络的单尺度特征聚合受到限制。一些方法使用深度卷积来改善FFN中的局部特征聚合。然而,由于隐藏层中的信道数量较多,单尺度令牌聚合很难利用丰富的信道表示。为了解决上述两个挑战,我们提出了一种用于HSI去噪的混合卷积和注意力网络(HCANet),它同时利用全局上下文信息和局部特征,如图1所示。具体来说,为了增强全局和局部特征的建模,我们设计了一个卷积和注意力融合模块(CAFM),旨在捕获长程依赖性和邻域光谱相关性。此外,为了提高FFN中的多尺度信息聚合,我们设计了一个多尺度前馈网络(MSFN),通过提取不同尺度的特征来提高去噪性能。在MSFN中使用了三个具有不同步长的并行扩张卷积。通过在两个真实世界的数据集上进行实验,我们验证了我们提出的HCANet是上级优于其他国家的最先进的竞争对手。

这封信的贡献可以总结如下:
1.探索了用于HSI去噪的全局和局部特征建模的有前途但具有挑战性的问题。据我们所知,这是第一个将联合收割机卷积和注意力机制结合起来用于HSI去噪任务的工作。
2.提出了多尺度前馈网络,在不同尺度上无缝提取特征,有效抑制多尺度噪声。
3.在两个基准数据集上进行了大量实验,验证了HCANet的合理性和有效性。

结论

我们提出了HCANet,一种新的网络HSI去噪。特别是,我们提出了卷积和注意力融合模块,CAFM,融合全局和局部特征。此外,我们提出了多尺度前馈网络,MSFN从多个尺度提取特征,提高去噪性能。在具有挑战性的HSI数据集上的实验结果表明,与现有的HSI去噪方法相比,我们提出的模型是有效的。我们的模型实现了显着的去噪性能的定量指标和重建图像的视觉质量。

二、HCANet全文代码

import sys
import torch
import torch.nn as nn
import torch.nn.functional as F
from pdb import set_trace as stx
import numbers

from einops import rearrange
import os
sys.path.append(os.getcwd())

# m_seed = 1
# # 设置seed
# torch.manual_seed(m_seed)
# torch.cuda.manual_seed_all(m_seed)


def to_3d(x):
    return rearrange(x, 'b c h w -> b (h w) c')

def to_4d(x,h,w):
    return rearrange(x, 'b (h w) c -> b c h w',h=h,w=w)

class BiasFree_LayerNorm(nn.Module):
    def __init__(self, normalized_shape):
        super(BiasFree_LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = (normalized_shape,)
        normalized_shape = torch.Size(normalized_shape)

        assert len(normalized_shape) == 1

        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.normalized_shape = normalized_shape

    def forward(self, x):
        sigma = x.var(-1, keepdim=True, unbiased=False)
        return x / torch.sqrt(sigma+1e-5) * self.weight

class WithBias_LayerNorm(nn.Module):
    def __init__(self, normalized_shape):
        super(WithBias_LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = (normalized_shape,)
        normalized_shape = torch.Size(normalized_shape)

        assert len(normalized_shape) == 1

        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.bias = nn.Parameter(torch.zeros(normalized_shape))
        self.normalized_shape = normalized_shape

    def forward(self, x):
        mu = x.mean(-1, keepdim=True)
        sigma = x.var(-1, keepdim=True, unbiased=False)
        return (x - mu) / torch.sqrt(sigma+1e-5) * self.weight + self.bias


class LayerNorm(nn.Module):
    def __init__(self, dim, LayerNorm_type):
        super(LayerNorm, self).__init__()
        if LayerNorm_type =='BiasFree':
            self.body = BiasFree_LayerNorm(dim)
        else:
            self.body = WithBias_LayerNorm(dim)

    def forward(self, x):
        h, w = x.shape[-2:]
        return to_4d(self.body(to_3d(x)), h, w)



##########################################################################
## Multi-Scale Feed-Forward Network (MSFN)
class FeedForward(nn.Module):
    def __init__(self, dim, ffn_expansion_factor, bias):
        super(FeedForward, self).__init__()

        hidden_features = int(dim*ffn_expansion_factor)

        self.project_in = nn.Conv3d(dim, hidden_features*3, kernel_size=(1,1,1), bias=bias)

        self.dwconv1 = nn.Conv3d(hidden_features, hidden_features, kernel_size=(3,3,3), stride=1, dilation=1, padding=1, groups=hidden_features, bias=bias)
        # self.dwconv2 = nn.Conv3d(hidden_features, hidden_features, kernel_size=(3,3,3), stride=1, dilation=2, padding=2, groups=hidden_features, bias=bias)
        # self.dwconv3 = nn.Conv3d(hidden_features, hidden_features, kernel_size=(3,3,3), stride=1, dilation=3, padding=3, groups=hidden_features, bias=bias)
        self.dwconv2 = nn.Conv2d(hidden_features, hidden_features, kernel_size=(3,3), stride=1, dilation=2, padding=2, groups=hidden_features, bias=bias)
        self.dwconv3 = nn.Conv2d(hidden_features, hidden_features, kernel_size=(3,3), stride=1, dilation=3, padding=3, groups=hidden_features, bias=bias)


        self.project_out = nn.Conv3d(hidden_features, dim, kernel_size=(1,1,1), bias=bias)

    def forward(self, x):
        x = x.unsqueeze(2)
        x = self.project_in(x)
        x1,x2,x3 = x.chunk(3, dim=1)
        x1 = self.dwconv1(x1).squeeze(2)
        x2 = self.dwconv2(x2.squeeze(2))
        x3 = self.dwconv3(x3.squeeze(2))
        # x1 = self.dwconv1(x1)
        # x2 = self.dwconv2(x2)
        # x3 = self.dwconv3(x3)
        x = F.gelu(x1)*x2*x3
        x = x.unsqueeze(2)
        x = x.squeeze(2)      
        return x



##########################################################################
## Convolution and Attention Fusion Module  (CAFM)
class Attention(nn.Module):
    def __init__(self, dim, num_heads, bias):
        super(Attention, self).__init__()
        self.num_heads = num_heads
        self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1))

        self.qkv = nn.Conv3d(dim, dim*3, kernel_size=(1,1,1), bias=bias)
        self.qkv_dwconv = nn.Conv3d(dim*3, dim*3, kernel_size=(3,3,3), stride=1, padding=1, groups=dim*3, bias=bias)
        self.project_out = nn.Conv3d(dim, dim, kernel_size=(1,1,1), bias=bias)
        self.fc = nn.Conv3d(3*self.num_heads, 9, kernel_size=(1,1,1), bias=True)

        self.dep_conv = nn.Conv3d(9*dim//self.num_heads, dim, kernel_size=(3,3,3), bias=True, groups=dim//self.num_heads, padding=1)


    def forward(self, x):
        b,c,h,w = x.shape
        x = x.unsqueeze(2)
        qkv = self.qkv_dwconv(self.qkv(x))
        qkv = qkv.squeeze(2)
        f_conv = qkv.permute(0,2,3,1) 
        f_all = qkv.reshape(f_conv.shape[0], h*w, 3*self.num_heads, -1).permute(0, 2, 1, 3) 
        f_all = self.fc(f_all.unsqueeze(2))
        f_all = f_all.squeeze(2)

        #local conv
        f_conv = f_all.permute(0, 3, 1, 2).reshape(x.shape[0], 9*x.shape[1]//self.num_heads, h, w)
        f_conv = f_conv.unsqueeze(2)
        out_conv = self.dep_conv(f_conv) # B, C, H, W
        out_conv = out_conv.squeeze(2)


        # global SA
        q,k,v = qkv.chunk(3, dim=1)   
        
        q = rearrange(q, 'b (head c) h w -> b head c (h w)', head=self.num_heads)
        k = rearrange(k, 'b (head c) h w -> b head c (h w)', head=self.num_heads)
        v = rearrange(v, 'b (head c) h w -> b head c (h w)', head=self.num_heads)

        q = torch.nn.functional.normalize(q, dim=-1)
        k = torch.nn.functional.normalize(k, dim=-1)

        attn = (q @ k.transpose(-2, -1)) * self.temperature
        attn = attn.softmax(dim=-1)

        out = (attn @ v)
        
        out = rearrange(out, 'b head c (h w) -> b (head c) h w', head=self.num_heads, h=h, w=w)
        out = out.unsqueeze(2)
        out = self.project_out(out)
        out = out.squeeze(2)
        output =  out + out_conv

        return output



##########################################################################
## CAMixing Block
class TransformerBlock(nn.Module):
    def __init__(self, dim, num_heads, ffn_expansion_factor, bias, LayerNorm_type):
        super(TransformerBlock, self).__init__()

        self.norm1 = LayerNorm(dim, LayerNorm_type)
        self.attn = Attention(dim, num_heads, bias)
        self.norm2 = LayerNorm(dim, LayerNorm_type)
        self.ffn = FeedForward(dim, ffn_expansion_factor, bias)

    def forward(self, x):
        x = x + self.attn(self.norm1(x))
        x = x + self.ffn(self.norm2(x))

        return x



class OverlapPatchEmbed(nn.Module):
    def __init__(self, in_c=31, embed_dim=48, bias=False):
        super(OverlapPatchEmbed, self).__init__()
        

        self.proj = nn.Conv3d(in_c, embed_dim, kernel_size=(3,3,3), stride=1, padding=1, bias=bias)

    def forward(self, x):
        x = x.unsqueeze(2)
        x = self.proj(x)
        x = x.squeeze(2)
        return x



class Downsample(nn.Module):
    def __init__(self, n_feat):
        super(Downsample, self).__init__()

        self.body = nn.Sequential(nn.Conv2d(n_feat, n_feat//2, kernel_size=3, stride=1, padding=1, bias=False),
                                  nn.PixelUnshuffle(2))

    def forward(self, x):
        # x = x.unsqueeze(2)
        x = self.body(x)
        # x = x.squeeze(2)
        return x

class Upsample(nn.Module):
    def __init__(self, n_feat):
        super(Upsample, self).__init__()

        self.body = nn.Sequential(nn.Conv2d(n_feat, n_feat*2, kernel_size=3, stride=1, padding=1, bias=False),
                                  nn.PixelShuffle(2))

    def forward(self, x):
        # x = x.unsqueeze(2)
        x = self.body(x)
        # x = x.squeeze(2)
        return x

##########################################################################
##---------- HCANet -----------------------
class HCANet(nn.Module):
    def __init__(self, 
        inp_channels=31, 
        out_channels=31, 
        dim = 48,
        num_blocks = [2,3,3,4], 
        num_refinement_blocks = 1,
        heads = [1,2,4,8],
        ffn_expansion_factor = 2.66,
        bias = False,
        LayerNorm_type = 'WithBias',
    ):

        super(HCANet, self).__init__()

        self.patch_embed = OverlapPatchEmbed(inp_channels, dim)

        self.encoder_level1 = nn.Sequential(*[TransformerBlock(dim=dim, num_heads=heads[0], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[0])])
        
        self.down1_2 = Downsample(dim) 
        self.encoder_level2 = nn.Sequential(*[TransformerBlock(dim=int(dim*2**1), num_heads=heads[1], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[1])])
        
        self.down2_3 = Downsample(int(dim*2**1)) 
        self.encoder_level3 = nn.Sequential(*[TransformerBlock(dim=int(dim*2**2), num_heads=heads[2], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[2])])


        self.up3_2 = Upsample(int(dim*2**2)) 
        self.reduce_chan_level2 = nn.Conv3d(int(dim*2**2), int(dim*2**1), kernel_size=(1,1,1), bias=bias)
        self.decoder_level2 = nn.Sequential(*[TransformerBlock(dim=int(dim*2**1), num_heads=heads[1], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[1])])
        
        self.up2_1 = Upsample(int(dim*2**1))  
        self.decoder_level1 = nn.Sequential(*[TransformerBlock(dim=int(dim*2**1), num_heads=heads[0], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[0])])
        
        self.refinement = nn.Sequential(*[TransformerBlock(dim=int(dim*2**1), num_heads=heads[0], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_refinement_blocks)])
        
            
        self.output = nn.Conv3d(int(dim*2**1), out_channels, kernel_size=(3,3,3), stride=1, padding=1, bias=bias)

    def forward(self, inp_img):
        

        inp_enc_level1 = self.patch_embed(inp_img)

        out_enc_level1 = self.encoder_level1(inp_enc_level1)


        
        inp_enc_level2 = self.down1_2(out_enc_level1)

        out_enc_level2 = self.encoder_level2(inp_enc_level2)

        inp_enc_level3 = self.down2_3(out_enc_level2)
        out_enc_level3 = self.encoder_level3(inp_enc_level3)

        out_dec_level3 = out_enc_level3
        inp_dec_level2 = self.up3_2(out_dec_level3)

        inp_dec_level2 = torch.cat([inp_dec_level2, out_enc_level2], 1)

        inp_dec_level2 = self.reduce_chan_level2(inp_dec_level2.unsqueeze(2))
        inp_dec_level2 = inp_dec_level2.squeeze(2)

        out_dec_level2 = self.decoder_level2(inp_dec_level2)


        inp_dec_level1 = self.up2_1(out_dec_level2)

        inp_dec_level1 = torch.cat([inp_dec_level1, out_enc_level1], 1)

        out_dec_level1 = self.decoder_level1(inp_dec_level1)

        
        out_dec_level1 = self.refinement(out_dec_level1)


        out_dec_level1 = self.output(out_dec_level1.unsqueeze(2)).squeeze(2) + inp_img



        return out_dec_level1

if __name__ == "__main__":
    model = HCANet()
    # print(model)
    # summary(model, (1,31,128,128))
    inputs = torch.ones([2,31,128,128]) #[b,c,h,w]
    outputs = model(inputs)
    print(outputs.size())


三、 改进教程

2.1 修改YAML文件

详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!

2.2 新建HCANet.py

详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽er 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!

2.3 修改tasks.py

详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽er 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!

三、验证是否成功即可

执行命令

python train.py

改完收工!
关注B站:AI学术叫叫兽
从此走上科研快速路
遥遥领先同行!!!!

详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽er 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!

标签:__,dim,nn,检测,self,融合,最新,bias,out
From: https://blog.csdn.net/weixin_51692073/article/details/139303641

相关文章

  • UE4中PhysX BroadPhase(碰撞检测的粗略阶段)
    PhysX的BroadPhase(碰撞检测的粗略阶段),具体是用AABB(轴向包围盒)来做碰撞检测具体算法有两种:SAP(SinglePruningBox,单个剪枝盒)和MBP(MultiPruningBox,多个剪枝盒) SAP(Single PruningBox,单个剪枝盒)当场景中有大量的物体(大世界有百万级别)时,即使它们已按AABB的三个轴向xyz做了排序......
  • golang errgroup 的超时检测
     > golangerrgroup的作用.errgroup的超时检测通常是一种事后得到结果的方式。 errgroup本身并不直接支持超时控制,而是依赖于与之关联的context.Context来实现超时和取消功能。 当context超时时,它会关闭Done通道,这将通知errgroup中的协程。 errgroup的Wait方法在检......
  • YOLOv8改进策略|智慧医疗案例|YOLOv8脊椎骨折检测,在骨折检测方面实现了 96% 的平均精
            颈椎⻣折构成严重的医疗紧急情况,如果不及时治疗或未发现,可能会导致终⾝瘫痪甚⾄死亡。随着时间的推移,如果不进⾏⼲预,这些⻣折可能会恶化。为了解决缺乏深度学习技术在脊柱⻣折检测实际应⽤⽅⾯的研究,本研究利⽤包含颈椎⻣折和⾮⻣折计算机断层扫描图像的......
  • YOLOv5改进策略|实战应用案例|YOLOv5苹果成熟度检测 ,准确率提升4.6%
       本⽂提出了⼀种基于YOLOv5s-BC的苹果检测实时检测⽅法。通过添加新的检测头并结合CA和BiFPN模块优化YOLOv5s⽹络模型,可以有效提取⽬标苹果的图像特征,增强对较⼩⽬标苹果的检测能⼒。详细结论总结如下。        YOLOv5-BC模型在测试集上的mAP性能达到88.7%,⽐......
  • 地理信息系统(GIS)软件的最新进展
    在数字化转型的浪潮中,地理信息系统(GIS)作为连接现实与数字世界的桥梁,其软件和技术的每一次迭代升级都在推动着空间信息处理和分析能力的飞跃。作为地理信息与遥感领域的探索者,本文将带您深入了解GIS软件的最新进展,揭示那些正在重塑行业面貌的创新技术和工具。  WebGIS:无......
  • 2024最新ChatGPT网站系统源码+Midjourney-AI绘画源码,支持ChatGPT4.0/GPT-4o文档分析图
    一、前言SparkAi创作系统是基于ChatGPT进行开发的Ai智能问答系统和Midjourney绘画系统,支持OpenAI-GPT全模型+国内AI全模型。支持GPT-4o大模型、文档分析、识图图片理解、GPTs应用、GPT语音对话、联网提问、GPT-4全模型、DALL-E3文生图、GPT4-All联网搜索模型、思维导图、会员......
  • 最新ChatGPT网站源码+Midjourney-AI绘画系统源码,详细图文搭建教程/支持GPT-4o文档分析
    一、前言SparkAi创作系统是基于ChatGPT进行开发的Ai智能问答系统和Midjourney绘画系统,支持OpenAI-GPT全模型+国内AI全模型。支持GPT-4o大模型、文档分析、识图图片理解、GPTs应用、GPT语音对话、联网提问、GPT-4全模型、DALL-E3文生图、GPT4-All联网搜索模型、思维导图、会员......
  • 基于最新发表的端到端实时目标检测模型YOLOv10开发构建自己的个性化目标检测系统从零
    在我前面的系列博文中,对于目标检测系列的任务写了很多超详细的教程,目的是能够读完文章即可实现自己完整地去开发构建自己的目标检测系统,感兴趣的话可以自行移步阅读:《基于官方YOLOv4-u5【yolov5风格实现】开发构建目标检测模型超详细实战教程【以自建缺陷检测数据集为例】》......
  • 521源码-免费音乐源码-最新流媒体在线音乐系统网站源码| 英文版源码| 音乐社区 | 多语
    免费音乐源码一键自动安装:安装用翻译看提示操作即可本源码下载地址:最新流媒体在线音乐系统网站源码|英文版源码|音乐社区|多语言|开心版-521源码更多网站源码学习教程,请点击......
  • FL Studio21.2.8最新水果软件汉化中文版本功能有多强大
    在音乐制作的世界里,有一款软件以其强大的功能和易用性赢得了无数音乐制作人的喜爱,那就是FLStudio。而今天,我们要介绍的是FLStudio21最新水果软件的汉化中文版本,这是一款专为中国用户打造的神器,让你的音乐创作如虎添翼!我们来看看FLStudio21最新水果软件汉化中文版本的功能......