首页 > 其他分享 >边缘计算——介绍:是一种分布式计算模型

边缘计算——介绍:是一种分布式计算模型

时间:2024-05-28 10:58:23浏览次数:36  
标签:模型 分布式计算 边缘 计算 数据处理 数据 设备

边缘计算是一种分布式计算模型,它将数据处理和计算资源放置在接近数据产生源头的边缘设备、传感器或用户设备上,以提供更快速、实时的计算和数据分析能力。以下是关于边缘计算的详细解释:

定义:

  • 边缘计算,如同其名字所示,指的是在网络的“边缘”进行数据处理和计算。这里的“边缘”指的是靠近物或数据源头的一侧,如物联网设备、智能手机等。

特点:

  1. 低延迟:通过将数据处理和计算推向网络边缘,边缘计算避免了将数据发送到远程云服务器进行处理的时间延迟,从而大大减少了数据传输和响应时间。
  2. 高带宽:边缘计算采用了分布式计算架构,能够在多个边缘节点之间共享计算和存储资源,提供更高的带宽和吞吐量。
  3. 数据隐私和安全性:由于数据处理和存储发生在离用户更近的边缘设备,减少了数据在网络传输中的暴露风险,同时可以在边缘设备上进行数据加密和安全认证,保护数据的隐私和安全。
  4. 离线工作能力:边缘设备具有一定的计算和存储能力,可以在断网或网络不稳定的环境下独立工作,提供实时的数据处理和决策能力。
  5. 适应多样化需求:边缘计算可以根据不同的应用需求,灵活地部署和配置边缘节点,满足不同终端设备、不同应用场景和业务需求的要求。
  6. 弹性扩展性:根据实际需求,边缘计算可以对计算和存储资源进行扩展和调整,以满足大规模数据处理和高并发访问的要求。
  7. 节能环保:将部分计算任务从传统的云数据中心转移到边缘设备上,减少了数据中心的能耗和碳排放,有助于节能环保。

应用领域:

  1. 物联网(IoT):大量的传感器和智能设备产生了海量的数据,边缘计算通过在这些设备上部署计算资源,实现对数据的快速响应和实时分析。
  2. 工业自动化:在制造业和工业自动化领域,边缘计算可以提供更快速、更可靠的数据处理和决策支持。
  3. 智能交通:通过在交通信号灯、摄像头和车辆上安装边缘设备,实现交通流量监测、车辆识别、交通信号优化等功能。
  4. 零售业:在门店内安装边缘设备,对商品库存进行实时监测和管理,实现智能补货和订单管理。
  5. 医疗和健康:边缘计算在医疗和健康领域的应用包括实时监测患者的健康数据,进行疾病预警和早期干预。

总之,边缘计算通过将数据处理和计算资源放置在接近数据产生源头的位置,实现了更快速、实时的数据处理和分析能力,为各种应用场景提供了强大的支持。

标签:模型,分布式计算,边缘,计算,数据处理,数据,设备
From: https://www.cnblogs.com/Formulate0303/p/18217397

相关文章

  • LLM 大模型学习必知必会系列(六):量化技术解析、QLoRA技术、量化库介绍使用(AutoGPTQ、A
    LLM大模型学习必知必会系列(六):量化技术解析、QLoRA技术、量化库介绍使用(AutoGPTQ、AutoAWQ)模型的推理过程是一个复杂函数的计算过程,这个计算一般以矩阵乘法为主,也就是涉及到了并行计算。一般来说,单核CPU可以进行的计算种类更多,速度更快,但一般都是单条计算;而显卡能进行的都是基......
  • 边缘计算|Hadoop——边缘计算和Hadoop是什么关系?
    边缘计算和Hadoop之间存在关联,但它们是两种不同的技术,分别应用于不同的计算场景。以下是它们之间关系的详细解释:定义与功能:边缘计算:边缘计算是指在靠近物或数据源头的一侧,采用网络、计算、存储、应用核心能力为一体的开放平台,就近提供最近端服务。它降低了延迟,节省了带宽,并允......
  • LLM 大模型学习必知必会系列(七):掌握分布式训练与LoRA/LISA微调:打造高性能大模型的秘
    LLM大模型学习必知必会系列(七):掌握分布式训练与LoRA/LISA微调:打造高性能大模型的秘诀进阶实战指南1.微调(SupervisedFinetuning)指令微调阶段使用了已标注数据。这个阶段训练的数据集数量不会像预训练阶段那么大,最多可以达到几千万条,最少可以达到几百条到几千条。指令微调可以......
  • LLM 大模型学习必知必会系列(四):LLM训练理论篇以及Transformer结构模型详解
    LLM大模型学习必知必会系列(四):LLM训练理论篇以及Transformer结构模型详解1.模型/训练/推理知识介绍深度学习领域所谓的“模型”,是一个复杂的数学公式构成的计算步骤。为了便于理解,我们以一元一次方程为例子解释:y=ax+b该方程意味着给出常数a、b后,可以通过给出的x求出......
  • LLM 大模型学习必知必会系列(三):LLM和多模态模型高效推理实践
    LLM大模型学习必知必会系列(三):LLM和多模态模型高效推理实践1.多模态大模型推理LLM的推理流程:多模态的LLM的原理:代码演示:使用ModelScopeNoteBook完成语言大模型,视觉大模型,音频大模型的推理环境配置与安装以下主要演示的模型推理代码可在魔搭社区免费实例PAI-DSW......
  • 利用大型语言模型轻松打造浪漫时刻
    当情人节年年如约而至,每每都需费尽心思为对方营造一场令人难忘的仪式,却因缺乏创意与思路而倍感困扰。今天,我决定让大型语言模型为我们提供一些灵感和建议,让我们能够轻松实现这一目标。让我们开始行动吧!此前,我曾撰写一篇关于如何与大型语言模型建立基本对话的文章。如果您感兴趣,不......
  • 如何实现倾斜摄影三维模型OSGB格式轻量化
    如何实现倾斜摄影三维模型OSGB格式轻量化 倾斜摄影三维模型以其高精度和真实感受在城市规划、建筑设计和虚拟漫游等领域发挥着重要作用。然而,由于其庞大的数据量和复杂的几何结构,给数据存储、传输和可视化带来了挑战。为了解决这个问题,倾斜摄影三维模型OSGB格式的轻量化成为必......
  • AI大模型在测试中的深度应用与实践案例
    文章目录1.示例项目背景2.环境准备3.代码实现3.1.自动生成测试用例3.2.自动化测试脚本3.3.性能测试3.4.结果分析4.进一步深入4.1.集成CI/CD管道4.1.1Jenkins示例4.2.详细的负载测试和性能监控4.2.1Locust示例4.3.测试结果分析与报告5.进一步集成和优化......
  • GARCH族模型:正态分布、t、GED分布EGARCH、TGARCH的VaR分析股票指数|附代码数据
    全文链接:http://tecdat.cn/?p=31023最近我们被客户要求撰写关于GARCH族模型的研究报告,包括一些图形和统计输出。如何构建合适的模型以恰当的方法对风险进行测量是当前金融研究领域的一个热门话题 ( 点击文末“阅读原文”获取完整代码数据******** )。VaR方法作为当前业内比较......
  • 从零开始构建 Vision Transformer(ViT) 模型
    Transformer模型最早由Vaswani等人在2017年论文AttentionIsAllYouNeed中提出,并已广泛应用于自然语言处理。2021年,Dosovitsky等人在论文AnImageisWorth16x16Words:TransformersforImageRecognitionatScale中提出将Transformer用于计算机视觉任务,与......