发现题目中描述的配对条件可以理解为:\(pc_i-pc_j=1\) 且 \(a_i\bmod a_j=0\),其中 \(pc_i\) 表示 \(a_i\) 的质因数个数。
自然想到以 \(pc\) 奇偶性建立二分图,可以配对的点间连一条边。
先不考虑费用,三种边为:
- \((s,i,b_i)\),其中 \(pc_i\bmod 2=1\)。
- \((i,t,b_i)\),其中 \(pc_i\bmod 2=0\)。
- \((i,j,INF)\),其中 \(pc_i\bmod 2=1,pc_j\bmod 2=0,|pc_i-pc_j|=1,\max(a_i,a_j)\bmod\min(a_i,a_j)=0\)。
前两种边的费用为 \(0\),最后一种为所得价值 \(c_i\times c_j\)。
由于我们希望总价值为正,所以 \(spfa\) 他死了 用来跑最长路。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=205,M=1e5+5;
int n,s,t,k=1,h[N],p[M],vis[N];
int cnt,l,m,to[M],nxt[M],lst[N];
int pc[N],vv[M],a[N],d[N],o[N];
ll w[M],f[M],flw[N],dis[N],c[N];
void add(int x,int y,ll z,ll q){
w[++k]=z;f[k]=q;to[k]=y;
nxt[k]=h[x];h[x]=k;
f[++k]=-q;to[k]=x;
nxt[k]=h[y];h[y]=k;
}queue<int>q;
int spfa(){
while(q.size()) q.pop();
for(int i=s;i<=t;i++)
lst[i]=-1,vis[i]=0,dis[i]=-1e18;
flw[s]=1e18;dis[s]=0;q.push(s);
while(q.size()){
int x=q.front();
q.pop();vis[x]=0;
for(int i=h[x];i;i=nxt[i]){
int y=to[i];ll vl=w[i];
if(vl&&dis[y]<dis[x]+f[i]){
lst[y]=i;
flw[y]=min(flw[x],vl);
dis[y]=dis[x]+f[i];
if(!vis[y])
q.push(y),vis[y]=1;
}
}
}return lst[t]!=-1;
}ll mxflw,mncst;
void MCMF(){
while(spfa()){
if(mncst+dis[t]*flw[t]<0){
mxflw+=mncst/(-dis[t]);return;
}mxflw+=flw[t];mncst+=dis[t]*flw[t];
for(int i=t;i!=s;i=to[lst[i]^1])
w[lst[i]]-=flw[t],w[lst[i]^1]+=flw[t];
}
}signed main(){
ios::sync_with_stdio(0);
cin.tie(0);cout.tie(0);
for(int i=2;i<M;i++){
if(vv[i]==0) p[++cnt]=i;
for(int j=1;j<=cnt&&i*p[j]<M;j++){
vv[i*p[j]]=1;
if(i%p[j]==0) break;
}
}cin>>n;t=n+1;
for(int i=1;i<=n;i++){
cin>>a[i];int x=a[i];
for(int j=1;x>1&&p[j]*p[j]<=a[i];j++)
while(x%p[j]==0) x/=p[j],pc[i]++;
if(x>1) pc[i]++;
if(pc[i]%2) d[++l]=i;
else o[++m]=i;
}for(int i=1;i<=n;i++){
int b;cin>>b;
if(pc[i]%2) add(s,i,b,0);
else add(i,t,b,0);
}for(int i=1;i<=n;i++) cin>>c[i];
for(int i=1;i<=l;i++)
for(int j=1;j<=m;j++){
int x=d[i],y=o[j];
if(pc[x]+1==pc[y]&&a[y]%a[x]==0)
add(x,y,1e18,c[x]*c[y]);
if(pc[y]+1==pc[x]&&a[x]%a[y]==0)
add(x,y,1e18,c[x]*c[y]);
}
MCMF();cout<<mxflw;
return 0;
}//spfa:它没有死透
标签:int,题解,bmod,++,pc,SDOI2016,配对,ll
From: https://www.cnblogs.com/chang-an-22-lyh/p/18200095/sdoi2016-shuzipeidui_tj