首页 > 其他分享 >极值原理

极值原理

时间:2024-05-12 16:52:33浏览次数:32  
标签:geq frac maximum principle 原理 极值 partial lambda

Maximum principle in the book geometric analysis

Throughout the book, there is frequent use of the maximum principle, but sometimes it doesn’t seem directly applicable, and the book does not provide an explanation. This troubled me for some time, but now I'm trying to provide something missed.

Let me take an example to explain it.

Corollary 5.8
Let \(M\) be a compact \(m\)-dimensional Riemannian manifold whose boundary is convex in the sense that the second fundamental form is nonnegative with respect to the outward pointing normal vector. Suppose that the Ricci curvature of \(M\) is bounded from below by

\[R_{ij} \geq -(m - 1)R \]

for some constant \(R \geq 0\), and \(d\) denotes the diameter of \(M\). Then there exist constants \(C_1(m)\), \(C_2(m) > 0\) depending on \(m\) alone, such that the first nonzero Neumann eigenvalue of \(M\) satisfies

\[\lambda_1 \geq \frac{C_1}{d^2} \exp(-C_2 d \sqrt{R}). \]

Proof. In view of the proof of Theorem 5.7, it suffices to show that the maximum value for the functional \(Q\) does not occur on the boundary of \(M\). Supposing the contrary that the maximum point for \(Q\) is \(x_0 \in \partial M\), let us denote the outward pointing unit normal vector by \(e_m\), and assume that \(\{e_1, \ldots, e_{m-1}\}\) are orthonormal tangent vectors to \(\partial M\). Since \(Q\) satisfies the differential inequality (5.15), the strong maximum principle implies that

\[e_m(Q)(x_0) > 0. \]

...

In the proof, the strong maximum principle was applied. So let us recall

Lemma (cf. Gilbarg and Trudinger)
Suppose that \(L\) is uniformly elliptic, \(c=0\) and \(Lu \geq 0\) in \(\Omega\). Let \(x_0 \in \partial\Omega\) be such that

  • \(u\) is continuous at \(x_0\);
  • \(u(x_0)>u(x)\) for all \(x \in \Omega\);
  • \(\partial\Omega\) satisfies an interior sphere condition at \(x_0\).

Then the outer normal derivative of \(u\) at \(x_0\), if it exists, satisfies the strict inequality $$\begin{equation}
\frac{\partial u}{\partial \nu} (x_0)>0. \end{equation}$$

If \(c \leq 0\) and \(c/\lambda\) is bounded, the same conclusion holds provided \(u(x_0) \geq 0\), and if \(u(x_0) = 0\) the same conclusion holds irrespective the sign of \(c.\)

Now Q satisfies the differential inequality (5.15), that is

\[\begin{align} \Delta Q \geq & \frac{m}{2(m-1)}|\nabla Q|^2 Q^{-1}+\langle\nabla v, \nabla Q\rangle Q^{-1}\left(\frac{2 \lambda u}{(m-1)(a+u)}-\frac{2(m-2)}{m-1} Q\right) \\ & +\left(\frac{2}{m-1} Q +\frac{4}{m-1} \frac{\lambda u}{a+u} -\frac{2 \lambda a}{a+u} -2(m-1) R \right)Q\\ & +\frac{2}{m-1}\left(\frac{\lambda u}{a+u}\right)^2. \end{align} \]

We need to justify that the maximum principle is applicable.

If

\[\frac{2}{m-1} Q +\frac{4}{m-1} \frac{\lambda u}{a+u} -\frac{2 \lambda a}{a+u} -2(m-1) R \leq 0, \]

then we have

\[Q\leq C_1(m)\lambda+C_2(m)R \]

for some constants denpending on \(m\) alone, which allow us apply the same argument in the proof of Thm 5.7.

So, w.l.o.g., we may assume

\[\frac{2}{m-1} Q +\frac{4}{m-1} \frac{\lambda u}{a+u} -\frac{2 \lambda a}{a+u} -2(m-1) R > 0, \]

near the maximum point \(x_0\).

But now we can "almost" apply the strong maximum principle, since the zero order term is positive.

However, the zero order term involves \(Q\) itself which make it slightly different from the usual linear elliptic equations. I checked some PDE textbooks, from weak maximum principle to strong maximum principle, it seems that they also work for equation (4).

In fact, we don't need any fancier maximum principle![1]

Since now we have

\[\begin{aligned} \Delta Q \geq & \frac{m}{2(m-1)}|\nabla Q|^2 Q^{-1}+\langle\nabla v, \nabla Q\rangle Q^{-1}\left(\frac{2 \lambda u}{(m-1)(a+u)}-\frac{2(m-2)}{m-1} Q\right) \\ & +\frac{2}{m-1}\left(\frac{\lambda u}{a+u}\right)^2, \end{aligned} \]

which doesn't involved any zero terms!


  1. Thanks to my colleague Adam's remainder. ↩︎

标签:geq,frac,maximum,principle,原理,极值,partial,lambda
From: https://www.cnblogs.com/crossLH/p/18187936

相关文章

  • Springboot自动配置原理
    在SpringBoot项目中的引导类上有一个注解@SpringBootApplication,这个注解是对三个注解进行了封装,分别是:@SpringBootConfiguration@EnableAutoConfiguration@ComponentScan其中@EnableAutoConfiguration是实现自动化配置的核心注解。该注解通过@Import注解导入对应的配......
  • MySQL Join原理分析(缓冲块嵌套与索引嵌套循环)
    场景假设A表(1000条数据)leftjoinB表(1000条数据)。嵌套循环(Nested-LoopJoin)极简概括:顾名思义多层循环叠加,由于MySQL条数数量有限,所用for循环而不用while,在MySQL中就是多层for循环。性能问题:MySQL使用这种作为join方式最简单,A表joinB表每次join查询都需要一百万次内部关联,每次......
  • 详解Redis持久化(持久化高危漏洞利用与多种对抗方案、RDB、AOF、同步手动持久化、异步
    谨防持久化+未授权访问漏洞入侵服务器CVE编号找不到,CNVD有一个:CNVD-2015-07557(国家信息安全漏洞共享平台漏洞编号)。这是我之前写过的文章,漏洞成因、影响范围、POC与对抗方案有详解:谨防利用Redis未授权访问漏洞入侵服务器RDB(RedisDatabase、全量保存,默认方式)极简概括:通过符......
  • 事件循环(event loop)原理,并类比理解qt的信号(Signal)和槽(Slot)机制)
    背景:实际项目中要使用pyqt/pyside技术,涉及到qt和asyncio的事件循环,并需要使用到qt的信号(Signal)和槽(Slot)机制,从底层了解事件循环的原理使得后续工作更好入手。事件循环是什么?事件循环(EventLoop)是一种用于处理和调度异步任务的机制。它通常用于编写异步编程,特别是在处理IO密......
  • 单项数据流和双向数据绑定的原理,区别
    单项数据流(UnidirectionalDataFlow)和双向数据绑定(Two-wayDataBinding)是前端开发中两种不同的数据管理方式,尤其在Vue和React这类现代前端框架中体现得尤为明显。下面简要概述它们的原理和区别:单项数据流(React的典型模式)原理:单项数据流的核心思想是数据从父组件流向子组件,形......
  • 第一性原理是什么意思
    第一性原理,也称为首要原则或基本原理,是一种思维方法,即从最基本的事实或假设出发,通过逻辑推理来解决问题。12第一性原理强调从问题的最根本出发,拆解复杂问题到最基本的真理和事实,然后重新构建思考和解决问题的方法。这种方法不依赖于类比、经验或先验知识,......
  • CSRF(跨站请求伪造)原理:
    CSRF(跨站请求伪造)原理:CSRF是一种网络攻击方式,攻击者利用用户已登录的信任网站A的凭证(通常是Cookie),在用户不知情的情况下,诱使用户的浏览器向另一个网站B发送恶意请求。这种攻击之所以奏效,是因为浏览器会自动携带用户在A网站的认证信息(如SessionCookie)去访问B网站,而B网站会误以为......
  • 逻辑斯特回归原理及Python实现
    逻辑回归(LogisticRegression),又称为logistic回归分析,是一种广义的线性回归模型,通常用于解决分类问题。虽然名字里有“回归”,但实际上它属于机器学习中的监督学习方法。逻辑回归最初用于解决二分类问题,它也可以通过一些技巧扩展到多分类问题。在实际应用中,我们通常使用给定的训......
  • 【视频】多元线性回归模型原理讲解与R语言实例
    原文链接:https://tecdat.cn/?p=36149原文出处:拓端数据部落公众号分析师:XueYang近年来,随着计量经济学和统计学的快速发展,回归模型作为一种有效的数据分析工具,被广泛应用于金融市场的分析中。回归模型能够通过建立变量之间的数学关系,揭示变量之间的相互作用机制,并预测未来趋势。......
  • 终于明白了 Array.sort(comparator) 的原理
    终于明白了Array.sort(comparator)的原理原文地址:https://www.jameskerr.blog/posts/javascript-sort-comparators/After13yearsofJavaScript,IfinallyhaveawaytorememberhowthecomparatorfunctioninArray.sort()works.使用JavaScript13年之后,我终于有......