import json from langchain.llms.base import LLM from transformers import AutoTokenizer, AutoModel, AutoConfig from typing import List, Optional class ChatGLM4(LLM): max_token: int = 8192 do_sample: bool = True temperature: float = 0.8 modelPath = "/home/cmcc/server/model/chatglm3-6b" top_p = 0.8 tokenizer: object = AutoTokenizer.from_pretrained(modelPath, trust_remote_code=True) model: object = None history: List = [] def __init__(self): super().__init__() print("--------------------------------") self.model = AutoModel.from_pretrained(self.modelPath, trust_remote_code=True).half().cuda().eval() @property def _llm_type(self) -> str: return "ChatGLM4" def _call(self, prompt: str, history: List = [], stop: Optional[List[str]] = ["<|user|>"]): if history is None: history = history history.append({"role": "user", "content": prompt}) response, history = self.model.chat(self.tokenizer, prompt, history=history) return response
from langchain.chains import LLMChain, RetrievalQA from langchain_community.document_loaders import TextLoader from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores.faiss import FAISS from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import PromptTemplate, ChatPromptTemplate from langchain_core.runnables import RunnableParallel, RunnablePassthrough from langchain_text_splitters import RecursiveCharacterTextSplitter from glm聊天客服 import ChatGLM4 embedding_model_dict = { "bge-large-zh-v1.5":"/home/cmcc/server/file/embFile/bge-large-zh-v1.5", "ebge-m3":"BAAI/bge-m3", "text2vec":"BAAI/text2vec-large-chinese", "text2vec2":"uer/sbert-base-chinese-nli", "text2vec3":"shibing624/text2vec-base-chinese" } def load_embedding_model(model_name="bge-large-zh-v1.5"): encode_kwargs = {"normalize_embeddings": False} model_kwargs = {"device": "cuda:0"} return HuggingFaceEmbeddings( model_name = embedding_model_dict[model_name], model_kwargs = model_kwargs, encode_kwargs = encode_kwargs ) embedding = load_embedding_model("bge-large-zh-v1.5") llm = ChatGLM4() loader = TextLoader("/home/cmcc/server/file/测试文档.txt", encoding="utf-8") doc = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=3000, chunk_overlap=400) docs = text_splitter.split_documents(doc) docsearch = FAISS.from_documents(docs, embedding) retriever = docsearch.as_retriever() template = """只根据以下情境回答问题: {context} 问题: {question} """ prompt = ChatPromptTemplate.from_template(template) # model = ChatOpenAI() output_parser = StrOutputParser() setup_and_retrieval = RunnableParallel( {"context": retriever, "question": RunnablePassthrough()} ) chain = setup_and_retrieval | prompt | llm | output_parser response = chain.invoke("小明和小红是什么关系") print(response)
标签:self,知识库,回答,langchain,本地,kwargs,import,model,history From: https://www.cnblogs.com/redhat0019/p/18121510