from langchain.chains import RetrievalQA from langchain_community.document_loaders import TextLoader from langchain_community.embeddings import OllamaEmbeddings from langchain_community.llms.ollama import Ollama from langchain_community.vectorstores.faiss import FAISS #使用 vectorstore 进行存储 from langchain_text_splitters import RecursiveCharacterTextSplitter llm = Ollama(model="qwen:7b") loader = TextLoader("/home/cmcc/server/file/测试文档.txt", encoding="utf-8") doc = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=3000, chunk_overlap=400) docs = text_splitter.split_documents(doc) #向量搜索引擎 embeddings = OllamaEmbeddings() docsearch = FAISS.from_documents(docs, embeddings) # FAISS.save_local("Ver", "index") #创建你的检索引擎 retriever 设置检索的数据库是那个 qa = RetrievalQA.from_chain_type(llm = llm, chain_type="stuff", retriever=docsearch.as_retriever()) query = "小张的姐姐是谁" response = qa.run(query) print(response)
标签:embeddings,llm,text,解锁,知识库,community,langchain,本地,import From: https://www.cnblogs.com/redhat0019/p/18119096