首页 > 其他分享 >EFPN代码解读

EFPN代码解读

时间:2024-04-02 20:29:06浏览次数:21  
标签:kernel 代码 EFPN 2048 解读 stride num Conv2d size

论文

Extended Feature Pyramid Network for Small Object Detection python3 D:/Project/EFPN-detectron2-master/tools/train_net.py --config-file configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_coco.yaml --num-gpus 1 训练脚本 cfg 中的配置 先获取配置文件对象 config ,一旦你获取了配置文件对象 cfg ,你可以通过修改它的属性来自定义模型和训练过程的各种设置。例如,可以通过 cfg.MODEL.WEIGHTS = "path/to/weights.pth" 来设置模型加载的预训练权重路径,或者通过 cfg.SOLVER.BASE_LR = 0.001 来设置学习率。 cfg.merge_from_file() 方法将指定配置文件中的配置选项合并到当前的配置文件对象 cfg 中,以 覆盖或添加新的配置选项。这样做的目的是将预定义模型的配置与当前的配置文件对象相结合,以确保模型在训练或推理过程中使用正确的参数和设置。 通过合并配置文件,你可以使用预定义模型的默认配置,并根据需要进行修改或覆盖特定的配置选项。 这样可以快速配置和使用预训练模型,并进行训练或推理任务。 在这里,将 cfg.MODEL.RESNETS.NUM_GROUPS 设置为 32 表示将使用 ResNeXt 模型,其中输入特征图将被分成32 个组进行卷积操作。如果将其设置为 1 ,则表示使用传统的 ResNet 模型,不进行组卷积。 通过调整 cfg.MODEL.RESNETS.NUM_GROUPS 的值,可以控制 ResNet ResNeXt 模型的架构, 以适应不同的任务和需求。 通过将 cfg.MODEL.BACKBONE.NAME 设置为 "build_resnet_fpn_backbone" ,可以 指定模型使用该函 数构建主干网络 。这意味着在模型的前向传播过程中,输入图像将通过 ResNet 网络提取特征,并与 FPN结构进行融合,以获取多尺度的特征表示。 通过设置不同的主干网络名称,可以使用不同的预定义主干网络结构或自定义的主干网络结构来适应不同的任务和数据集。 表示使用 ResNet 的第 2 、 3 、 4 、 5 和 6 层的特征图作为输入。这意味着这些层级的特征将被传递给 FPN 进行融合。通过设置不同的输入特征层,可以根据任务和数据集的需求来选择使用哪些层级的特征图进行特征融合,以获得更好的多尺度表示能力。 cfg.MODEL.RPN.BATCH_SIZE_PER_IMAGE = 128 :这句代码 设置了区域生成网络( Region Proposal Network RPN )每张图像的正负样本比例 。在每张图像上, RPN 会生成一系列候选区 域,其中一部分是正样本(包含目标),一部分是负样本(不包含目标)。 BATCH_SIZE_PER_IMAGE 表示每张图像中的候选区域的总数,其中正样本和负样本的比例由算法自动调整。 cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 256 :这句代码 设置了 ROI 头部( Region of  Interest Heads )每张图像的正负样本比例 。 ROI 头部是用于目标检测中对候选区域进行分类和回归的部分。 BATCH_SIZE_PER_IMAGE 表示每张图像中用于训练 ROI 头部的候选区域的总数,其中 正样本和负样本的比例由算法自动调整 。 cfg.SOLVER.IMS_PER_BATCH = 1 :这句代码设置了每次训练时用于更新梯度的图像批次大小。 IMS_PER_BATCH 表示每次训练使用的图像数量。在这个例子中,每次训练使用 1 张图像进行梯度更新。

构造训练器

FTT.py

用于将输入的通道数 out_channels 缩放为 out_channels * 4。
import logging
import numpy as np
import fvcore.nn.weight_init as weight_init
import torch
import torch.nn.functional as F
from torch import nn
from detectron2.layers import Conv2d, ShapeSpec, get_norm
import math
from .backbone import Backbone
from .build import BACKBONE_REGISTRY
from .resnet import build_resnet_backbone
# p2, p3 in the paper is p3, p4 for us
# format of p2, p3 is both [bs, channels, height, width] p2和p3都是张量,均表示特征
图
def FTT_get_p3pr(p2, p3, out_channels, norm):
# 1x1卷积,
channel_scaler = Conv2d(
out_channels,
out_channels * 4,
kernel_size=1,
bias=False
#norm=''
)
# 定义两个内部函数
# 用于创建内容特征的函数
# tuple of (conv2d, conv2d, iter)
# 多次应用 1x1 的卷积层和 ReLU 激活函数来提取内容特征。(内容特征也可以通过transformer
来实现)
def create_content_extractor(x, num_channels, iterations=3):
conv1 = Conv2d(
num_channels,
num_channels,
kernel_size=1,
bias=False,
#norm=get_norm(norm, num_channels),
)
conv2 = Conv2d(
num_channels,
num_channels,
kernel_size=1,
bias=False,
#norm=get_norm(norm, num_channels),
)
out = x
# 通过for循环来做
for i in range(iterations):
out = conv1(out)
out = F.relu_(out)
out = conv2(out)
out = F.relu_(out)
return out
# 创建纹理特征的函数
# 最后应用了一个输出通道数为 num_channels/2 的 1x1 卷积层,用于提取纹理特征。
def create_texture_extractor(x, num_channels, iterations=3):
conv1 = Conv2d(
num_channels,
num_channels,
kernel_size=1,
bias=False,
#norm=get_norm(norm, num_channels),
)
conv2 = Conv2d(
num_channels,
num_channels,
kernel_size=1,
bias=False,
#norm=get_norm(norm, num_channels),
)
conv3 = Conv2d(
num_channels,
int(num_channels/2),
kernel_size=1,
bias=False,
)
out = x
for i in range(iterations):
out = conv1(out)
out = F.relu_(out)
out = conv2(out)
out = F.relu_(out)
out = conv3(out)
out = F.relu_(out)
return out
bottom = p3
# 对P3进行通道缩放,通过 channel_scaler 将通道数从 channels 缩放为 channels * 4。
bottom = channel_scaler(bottom)
# 用 create_content_extractor 函数提取内容特征,将缩放后的 p3 作为输入,并将输出存储
在 bottom 变量中。
bottom = create_content_extractor(bottom, out_channels*4)
# 亚像素卷积
# 使用 nn.PixelShuffle(2) 进行像素重排,将 bottom 中的每个像素的特征图尺寸增加两倍。
sub_pixel_conv = nn.PixelShuffle(2)
# 将 p2 和重排后的 bottom 在通道维度上进行连接,形成一个新的张量 top
bottom = sub_pixel_conv(bottom)
#print("\np3 shape: ",bottom.shape,"\n")
# We interpreted "wrap" as concatenating bottom and top
# so the total channels is doubled after (basically place one on top
# of the other)
top = p2
top = torch.cat((bottom, top), axis=1)
# 使用 create_texture_extractor 函数提取纹理特征,将 top 作为输入,并将输出存储在
top 变量中。
top = create_texture_extractor(top, out_channels*2)
#top = top[:,256:]
# 残差连接部分
result = bottom + top
return result

GeneralizedRCNN(
 (backbone): FPN(
 (fpn_lateral2): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
 (fpn_output2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (fpn_lateral3): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
 (fpn_output3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (fpn_lateral4): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
 (fpn_output4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (fpn_lateral5): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1))
 (fpn_output5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (fpn_lateral6): Conv2d(4096, 256, kernel_size=(1, 1), stride=(1, 1))
 (fpn_output6): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (top_block): LastLevelMaxPool()
 (bottom_up): ResNet(
 (stem): BasicStem(
 (conv1): Conv2d(
 3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False
 (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
 )
 )
 (res2): Sequential(
 (0): BottleneckBlock(
 (shortcut): Conv2d(
 64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
 )
 (conv1): Conv2d(
 64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
 )
 (conv2): Conv2d(
 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
 )
 (conv3): Conv2d(
 256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
 )
 )
 (1): BottleneckBlock(
 (conv1): Conv2d(
 256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
 )
 (conv2): Conv2d(
 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
 )
 (conv3): Conv2d(
 256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
 )
 )
 (2): BottleneckBlock(
 (conv1): Conv2d(
 256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
 )
 (conv2): Conv2d(
 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
 )
 (conv3): Conv2d(
 256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
 )
 )
 )
 (res3): Sequential(
 (0): SingleDownsampling(
 (conv1): Conv2d(
 256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False
 (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
 )
 )
 )
 (res4): Sequential(
 (0): BottleneckBlock(
 (shortcut): Conv2d(
 512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False
 (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
 )
 (conv1): Conv2d(
 512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
 )
 (conv2): Conv2d(
 1024, 1024, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
 )
 (conv3): Conv2d(
 1024, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
 )
 )
 (1): BottleneckBlock(
 (conv1): Conv2d(
 1024, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
 )
 (conv2): Conv2d(
 1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
 )
 (conv3): Conv2d(
 1024, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
 )
 )
 (2): BottleneckBlock(
 (conv1): Conv2d(
 1024, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
 )
 (conv2): Conv2d(
 1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
 )
 (conv3): Conv2d(
 1024, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
 )
 )
 (3): BottleneckBlock(
 (conv1): Conv2d(
 1024, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
 )
 (conv2): Conv2d(
 1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
 )
 (conv3): Conv2d(
 1024, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
 )
 )
 )
 (res5): Sequential(
 (0): BottleneckBlock(
 (shortcut): Conv2d(
 1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv1): Conv2d(
 1024, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv2): Conv2d(
 2048, 2048, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv3): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 )
 (1): BottleneckBlock(
 (conv1): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv2): Conv2d(
 2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv3): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 )
 (2): BottleneckBlock(
 (conv1): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv2): Conv2d(
 2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv3): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 )
 (3): BottleneckBlock(
 (conv1): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv2): Conv2d(
 2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv3): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 )
 (4): BottleneckBlock(
 (conv1): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv2): Conv2d(
 2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv3): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 )
 (5): BottleneckBlock(
 (conv1): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv2): Conv2d(
 2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv3): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 )
 (6): BottleneckBlock(
 (conv1): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv2): Conv2d(
 2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv3): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 )
 (7): BottleneckBlock(
 (conv1): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv2): Conv2d(
 2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv3): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 )
 (8): BottleneckBlock(
 (conv1): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv2): Conv2d(
 2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv3): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 )
 (9): BottleneckBlock(
 (conv1): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv2): Conv2d(
 2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv3): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 )
 (10): BottleneckBlock(
 (conv1): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv2): Conv2d(
 2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv3): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 )
 (11): BottleneckBlock(
 (conv1): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv2): Conv2d(
 2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv3): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 )
 (12): BottleneckBlock(
 (conv1): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv2): Conv2d(
 2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv3): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 )
 (13): BottleneckBlock(
 (conv1): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv2): Conv2d(
 2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv3): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 )
 (14): BottleneckBlock(
 (conv1): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv2): Conv2d(
 2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv3): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 )
 (15): BottleneckBlock(
 (conv1): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv2): Conv2d(
 2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv3): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 )
 (16): BottleneckBlock(
 (conv1): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv2): Conv2d(
 2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv3): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 )
 (17): BottleneckBlock(
 (conv1): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv2): Conv2d(
 2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv3): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 )
 (18): BottleneckBlock(
 (conv1): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv2): Conv2d(
 2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv3): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 )
 (19): BottleneckBlock(
 (conv1): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv2): Conv2d(
 2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv3): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 )
 (20): BottleneckBlock(
 (conv1): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv2): Conv2d(
 2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv3): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 )
 (21): BottleneckBlock(
 (conv1): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv2): Conv2d(
 2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv3): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 )
 (22): BottleneckBlock(
 (conv1): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv2): Conv2d(
 2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv3): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 )
 )
 (res6): Sequential(
 (0): BottleneckBlock(
 (shortcut): Conv2d(
 2048, 4096, kernel_size=(1, 1), stride=(2, 2), bias=False
 (norm): FrozenBatchNorm2d(num_features=4096, eps=1e-05)
 )
 (conv1): Conv2d(
 2048, 4096, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=4096, eps=1e-05)
 )
 (conv2): Conv2d(
 4096, 4096, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=4096, eps=1e-05)
 )
 (conv3): Conv2d(
 4096, 4096, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=4096, eps=1e-05)
 )
 )
 (1): BottleneckBlock(
 (conv1): Conv2d(
 4096, 4096, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=4096, eps=1e-05)
 )
 (conv2): Conv2d(
 4096, 4096, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=4096, eps=1e-05)
 )
 (conv3): Conv2d(
 4096, 4096, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=4096, eps=1e-05)
 )
 )
 (2): BottleneckBlock(
 (conv1): Conv2d(
 4096, 4096, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=4096, eps=1e-05)
 )
 (conv2): Conv2d(
 4096, 4096, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=4096, eps=1e-05)
 )
 (conv3): Conv2d(
 4096, 4096, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=4096, eps=1e-05)
 )
 )
 )
 )
 )
 (proposal_generator): RPN(
 (rpn_head): StandardRPNHead(
 (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (objectness_logits): Conv2d(256, 3, kernel_size=(1, 1), stride=(1, 1))
 (anchor_deltas): Conv2d(256, 12, kernel_size=(1, 1), stride=(1, 1))
 )
 (anchor_generator): DefaultAnchorGenerator(
 (cell_anchors): BufferList()
 )
 )
 (roi_heads): StandardROIHeads(
 (box_pooler): ROIPooler(
 (level_poolers): ModuleList(
 (0): ROIAlign(output_size=(7, 7), spatial_scale=0.25, sampling_ratio=0, aligned=True)
 (1): ROIAlign(output_size=(7, 7), spatial_scale=0.125, sampling_ratio=0, aligned=True)
 (2): ROIAlign(output_size=(7, 7), spatial_scale=0.0625, sampling_ratio=0, aligned=True)
 (3): ROIAlign(output_size=(7, 7), spatial_scale=0.03125, sampling_ratio=0, aligned=True)
 )
 )
 (box_head): FastRCNNConvFCHead(
 (flatten): Flatten(start_dim=1, end_dim=-1)
 (fc1): Linear(in_features=12544, out_features=1024, bias=True)
 (fc_relu1): ReLU()
 (fc2): Linear(in_features=1024, out_features=1024, bias=True)
 (fc_relu2): ReLU()
 )
 (box_predictor): FastRCNNOutputLayers(
 (cls_score): Linear(in_features=1024, out_features=81, bias=True)
 (bbox_pred): Linear(in_features=1024, out_features=320, bias=True)
 )
 )
)
GeneralizedRCNN(
 (backbone): FPN(
 (fpn_lateral2): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
 (fpn_output2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (fpn_lateral3): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
 (fpn_output3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (fpn_lateral4): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
 (fpn_output4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (fpn_lateral5): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1))
 (fpn_output5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (fpn_lateral6): Conv2d(4096, 256, kernel_size=(1, 1), stride=(1, 1))
 (fpn_output6): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (top_block): LastLevelMaxPool()
 (bottom_up): ResNet(
 (stem): BasicStem(
 (conv1): Conv2d(
 3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False
 (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
 )
 )
 (res2): Sequential(
 (0): BottleneckBlock(
 (shortcut): Conv2d(
 64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
 )
 (conv1): Conv2d(
 64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
 )
 (conv2): Conv2d(
 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
 )
 (conv3): Conv2d(
 256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
 )
 )
 (1): BottleneckBlock(
 (conv1): Conv2d(
 256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
 )
 (conv2): Conv2d(
 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
 )
 (conv3): Conv2d(
 256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
 )
 )
 (2): BottleneckBlock(
 (conv1): Conv2d(
 256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
 )
 (conv2): Conv2d(
 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
 )
 (conv3): Conv2d(
 256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
 )
 )
 )
 (res3): Sequential(
 (0): SingleDownsampling(
 (conv1): Conv2d(
 256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False
 (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
 )
 )
 )
 (res4): Sequential(
 (0): BottleneckBlock(
 (shortcut): Conv2d(
 512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False
 (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
 )
 (conv1): Conv2d(
 512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
 )
 (conv2): Conv2d(
 1024, 1024, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
 )
 (conv3): Conv2d(
 1024, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
 )
 )
 (1): BottleneckBlock(
 (conv1): Conv2d(
 1024, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
 )
 (conv2): Conv2d(
 1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
 )
 (conv3): Conv2d(
 1024, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
 )
 )
 (2): BottleneckBlock(
 (conv1): Conv2d(
 1024, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
 )
 (conv2): Conv2d(
 1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
 )
 (conv3): Conv2d(
 1024, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
 )
 )
 (3): BottleneckBlock(
 (conv1): Conv2d(
 1024, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
 )
 (conv2): Conv2d(
 1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
 )
 (conv3): Conv2d(
 1024, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
 )
 )
 )
 (res5): Sequential(
 (0): BottleneckBlock(
 (shortcut): Conv2d(
 1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv1): Conv2d(
 1024, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv2): Conv2d(
 2048, 2048, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv3): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 )
 (1): BottleneckBlock(
 (conv1): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv2): Conv2d(
 2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv3): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 )
 (2): BottleneckBlock(
 (conv1): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv2): Conv2d(
 2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv3): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 )
 (3): BottleneckBlock(
 (conv1): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv2): Conv2d(
 2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv3): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 )
 (4): BottleneckBlock(
 (conv1): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv2): Conv2d(
 2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv3): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 )
 (5): BottleneckBlock(
 (conv1): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv2): Conv2d(
 2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 (conv3): Conv2d(
 2048, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
 )
 )
 )
 (res6): Sequential(
 (0): BottleneckBlock(
 (shortcut): Conv2d(
 2048, 4096, kernel_size=(1, 1), stride=(2, 2), bias=False
 (norm): FrozenBatchNorm2d(num_features=4096, eps=1e-05)
 )
 (conv1): Conv2d(
 2048, 4096, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=4096, eps=1e-05)
 )
 (conv2): Conv2d(
 4096, 4096, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=4096, eps=1e-05)
 )
 (conv3): Conv2d(
 4096, 4096, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=4096, eps=1e-05)
 )
 )
 (1): BottleneckBlock(
 (conv1): Conv2d(
 4096, 4096, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=4096, eps=1e-05)
 )
 (conv2): Conv2d(
 4096, 4096, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=4096, eps=1e-05)
 )
 (conv3): Conv2d(
 4096, 4096, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=4096, eps=1e-05)
 )
 )
 (2): BottleneckBlock(
 (conv1): Conv2d(
 4096, 4096, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=4096, eps=1e-05)
 )
 (conv2): Conv2d(
 4096, 4096, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False
 (norm): FrozenBatchNorm2d(num_features=4096, eps=1e-05)
 )
 (conv3): Conv2d(
 4096, 4096, kernel_size=(1, 1), stride=(1, 1), bias=False
 (norm): FrozenBatchNorm2d(num_features=4096, eps=1e-05)
 )
 )
 )
 )
 )
 (proposal_generator): RPN(
 (rpn_head): StandardRPNHead(
 (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (objectness_logits): Conv2d(256, 3, kernel_size=(1, 1), stride=(1, 1))
 (anchor_deltas): Conv2d(256, 12, kernel_size=(1, 1), stride=(1, 1))
 )
 (anchor_generator): DefaultAnchorGenerator(
 (cell_anchors): BufferList()
 )
 )
 (roi_heads): StandardROIHeads(
 (box_pooler): ROIPooler(
 (level_poolers): ModuleList(
 (0): ROIAlign(output_size=(7, 7), spatial_scale=0.25, sampling_ratio=0, aligned=True)
 (1): ROIAlign(output_size=(7, 7), spatial_scale=0.125, sampling_ratio=0, aligned=True)
 (2): ROIAlign(output_size=(7, 7), spatial_scale=0.0625, sampling_ratio=0, aligned=True)
 (3): ROIAlign(output_size=(7, 7), spatial_scale=0.03125, sampling_ratio=0, aligned=True)
 )
 )
 (box_head): FastRCNNConvFCHead(
 (flatten): Flatten(start_dim=1, end_dim=-1)
 (fc1): Linear(in_features=12544, out_features=1024, bias=True)
 (fc_relu1): ReLU()
 (fc2): Linear(in_features=1024, out_features=1024, bias=True)
 (fc_relu2): ReLU()
 )
 (box_predictor): FastRCNNOutputLayers(
 (cls_score): Linear(in_features=1024, out_features=81, bias=True)
 (bbox_pred): Linear(in_features=1024, out_features=320, bias=True)
 )
 )
)

HAT代码

CAB

由于基于 Transformer 的结构通常需要大量的通道来嵌入令牌,因此直接使用具有恒定宽度的卷积会产生很大的计算成本。因此,我们用常数β 压缩两个卷积层的通道数。对于具有 C 个通道的输入特征,第一个卷积层之后的输出特征的通道数被压缩为C/ β ,然后通过第二层将特征扩展到 C 个通道。接下来,利用标准CA 模块 [68] 自适应地重新缩放信道特征。

HAB

W-MSA

窗口划分

Linear

forward的过程

PatchMergin
在视觉注意力机制中 引入更大感受野的上下文信息 ,以帮助模型更好地理解图像。通过将输入特征划分为四个子区域并进行合并

OCAB

具体来说, nn.Linear(dim, dim * 3, bias=qkv_bias) 创建了一个线性变换层,它接受维度为 dim 的输入特征,并将其映射到维度为 dim * 3 的输出。这里的 dim * 3 是因为输出包含了查询 ( q )、键( k )和值( v )三个部分。 该线性变换层的权重矩阵的形状为 (dim * 3, dim) ,表示将输入特征的每个元素与权重矩阵相乘,然后进行偏置项的加和。 bias=qkv_bias 参数用于控制是否包含偏置项。 通过这个线性变换层,输入特征经过映射后可以分别得到查询( q )、键( k )和值( v )的表示,用于后续的注意力计算。 _no_grad_trunc_normal_ 函数通过截断正态分布初始化给定的张量,并确保生成的值位于指定的范围内,以帮助模型的初始化和训练。
forward函数

改进 原本的普通 FTT ,改成了使用 SwinTransformer 来提取特征的 FTT 模块 未改之前的损失

标签:kernel,代码,EFPN,2048,解读,stride,num,Conv2d,size
From: https://blog.csdn.net/weixin_43238909/article/details/137287974

相关文章

  • 代码随想录算法训练营DAY14|C++二叉树Part.1|二叉树的递归遍历、二叉树的迭代遍历、二
    文章目录二叉树的递归遍历思路CPP代码二叉树的迭代遍历思路前序遍历后序遍历后序遍历二叉树的统一迭代法二叉树的递归遍历144.二叉树的前序遍历、145.二叉树的后序遍历、94.二叉树的中序遍历文章讲解:二叉树的递归遍历视频讲解:每次写递归都要靠直觉?这次带你学......
  • 解读中国白云岩行业新机遇,市场规模将持续扩大
    一、行业简述   白云岩作为一种非金属矿产,主要由白云石矿物组成,其独特的物理和化学性质使其在建筑、化工、冶金、农业等多个领域拥有广泛的应用。白云岩行业涵盖了从矿产开采到加工销售的全产业链,具有资源依赖性强、产业链长、市场需求多样的特点。二、市场背景   ......
  • 挣值分析代码(简陋版)
    具体代码importmatplotlib.pyplotaspltimportnumpyasnpimportmatplotlibmatplotlib.use('TkAgg')frompylabimportmplmpl.rcParams['font.sans-serif']=['MicrosoftYaHei']#指定默认字体:解决plot不能显示中文问题mpl.rcParams['axes.un......
  • vue3+ant-design-vue - 最新实现“侧边动态导航栏+面包屑导航“功能,vue3+ant后台管理
    效果图在vue3+antdesignvue后台管理系统中,详细完成菜单导航+面包屑动态联动功能效果,支持缓存功能、配置简洁、自动跟随route路由进行变化、自动匹配菜单和面包屑导航的文字等,超详细实用的示例demo全部源代码。提供详细示例源代码,新手小白直接复制稍微改下配置就能用了,快......
  • 关于AI编程代码生成工具汇总(持续整理中)
    1.BaiduComatehttps://comate.baidu.com/zh基于文心大模型,结合百度积累多年的编程现场大数据和外部优秀开源数据,为你生成更符合实际研发场景的优质代码。提升编码效率,释放“十倍”软件生产力。有免费版和付费版(提供高级功能)目前看只支持前端工具(目前Comate支持100+主流编程......
  • 精彩解读:短链接应用全方位探究
    1.短链接的定义和原理短链接是一种将长网址转换为短网址的服务,通过简化网址长度,方便用户分享和传播链接。短链接服务通过将长网址映射到短标识符的方式,实现对原始网址的压缩和简化。用户在访问短链接时,系统会将短链接还原为原始长网址,实现跳转到目标网页的功能。短链接的原......
  • 被 AI 写的游戏代码砸中是什么感觉 | 10 分钟打造你的超级 AI 编码助手
    近年来,人工智能得到了迅猛的发展,并在各行各业都得到了广泛应用。尤其是近两年来,AI开发工具逐渐成为开发者们的新宠,其中通义灵码(阿里云发布的一款基于通义大模型的AI编码助手)更是引发了无限可能性的探索。截至目前,通义灵码下载量已经突破100万。是国内使用率最高的AI编码助手......
  • python基础——基础代码每日复习
    '''字符串的格式化方法一,示例'''name="张三"money=102desc="今天收到{}的学费{}元"string=desc.format(name,money)print(string)#今天收到张三的学费102元'''字符串的格式化方法一,示例'''str='今天在{}......
  • 解密Android APP加固过程中的代码混淆技术,实现加固定制化
    AndroidAPP加固是优化APK安全性的一种方法,常见的加固方式有混淆代码、加壳、数据加密、动态加载等。下面介绍一下AndroidAPP加固的具体实现方式。混淆代码使用ipaguard工具可以对代码进行混淆,使得反编译出来的代码很难阅读和理解,官网下载ipaguard即可。加固混淆......
  • Android APP安全加固:深度解析代码混淆在保护应用安全方面的优势与局限性
    AndroidAPP加固是优化APK安全性的一种方法,常见的加固方式有混淆代码、加壳、数据加密、动态加载等。下面介绍一下AndroidAPP加固的具体实现方式。混淆代码使用ipaguard工具可以对代码进行混淆,使得反编译出来的代码很难阅读和理解,官网下载ipaguard即可。加固混淆......