首页 > 其他分享 >zhipuai的GLM-4模型API访问出现错误: ConnectError: TLS/SSL connection has been closed (EOF) (_ssl.c:1131)“

zhipuai的GLM-4模型API访问出现错误: ConnectError: TLS/SSL connection has been closed (EOF) (_ssl.c:1131)“

时间:2024-03-19 20:01:07浏览次数:32  
标签:TLS GLM stream zhipuai self request File ._ response

1 简介

访问zhipuaiGLM-4模型的API时, 挂上梯子后访问失败, 显示ConnectError: TLS/SSL connection has been closed (EOF) (_ssl.c:1131) 报错信息如下

{
	"name": "ConnectError",
	"message": "TLS/SSL connection has been closed (EOF) (_ssl.c:1131)",
	"stack": "---------------------------------------------------------------------------
ConnectError                              Traceback (most recent call last)
File d:\\miniconda\\envs\\research\\lib\\site-packages\\httpx\\_transports\\default.py:69, in map_httpcore_exceptions()
     68 try:
---> 69     yield
     70 except Exception as exc:

File d:\\miniconda\\envs\\research\\lib\\site-packages\\httpx\\_transports\\default.py:233, in HTTPTransport.handle_request(self, request)
    232 with map_httpcore_exceptions():
--> 233     resp = self._pool.handle_request(req)
    235 assert isinstance(resp.stream, typing.Iterable)

File d:\\miniconda\\envs\\research\\lib\\site-packages\\httpcore\\_sync\\connection_pool.py:216, in ConnectionPool.handle_request(self, request)
    215     self._close_connections(closing)
--> 216     raise exc from None
    218 # Return the response. Note that in this case we still have to manage
    219 # the point at which the response is closed.

File d:\\miniconda\\envs\\research\\lib\\site-packages\\httpcore\\_sync\\connection_pool.py:196, in ConnectionPool.handle_request(self, request)
    194 try:
    195     # Send the request on the assigned connection.
--> 196     response = connection.handle_request(
    197         pool_request.request
    198     )
    199 except ConnectionNotAvailable:
    200     # In some cases a connection may initially be available to
    201     # handle a request, but then become unavailable.
    202     #
    203     # In this case we clear the connection and try again.

File d:\\miniconda\\envs\\research\\lib\\site-packages\\httpcore\\_sync\\http_proxy.py:289, in TunnelHTTPConnection.handle_request(self, request)
    283 connect_request = Request(
    284     method=b\"CONNECT\",
    285     url=connect_url,
    286     headers=connect_headers,
    287     extensions=request.extensions,
    288 )
--> 289 connect_response = self._connection.handle_request(
    290     connect_request
    291 )
    293 if connect_response.status < 200 or connect_response.status > 299:

File d:\\miniconda\\envs\\research\\lib\\site-packages\\httpcore\\_sync\\connection.py:99, in HTTPConnection.handle_request(self, request)
     98     self._connect_failed = True
---> 99     raise exc
    101 return self._connection.handle_request(request)

File d:\\miniconda\\envs\\research\\lib\\site-packages\\httpcore\\_sync\\connection.py:76, in HTTPConnection.handle_request(self, request)
     75 if self._connection is None:
---> 76     stream = self._connect(request)
     78     ssl_object = stream.get_extra_info(\"ssl_object\")

File d:\\miniconda\\envs\\research\\lib\\site-packages\\httpcore\\_sync\\connection.py:154, in HTTPConnection._connect(self, request)
    153 with Trace(\"start_tls\", logger, request, kwargs) as trace:
--> 154     stream = stream.start_tls(**kwargs)
    155     trace.return_value = stream

File d:\\miniconda\\envs\\research\\lib\\site-packages\\httpcore\\_backends\\sync.py:168, in SyncStream.start_tls(self, ssl_context, server_hostname, timeout)
    167         self.close()
--> 168         raise exc
    169 return SyncStream(sock)

File d:\\miniconda\\envs\\research\\lib\\contextlib.py:131, in _GeneratorContextManager.__exit__(self, type, value, traceback)
    130 try:
--> 131     self.gen.throw(type, value, traceback)
    132 except StopIteration as exc:
    133     # Suppress StopIteration *unless* it's the same exception that
    134     # was passed to throw().  This prevents a StopIteration
    135     # raised inside the \"with\" statement from being suppressed.

File d:\\miniconda\\envs\\research\\lib\\site-packages\\httpcore\\_exceptions.py:14, in map_exceptions(map)
     13     if isinstance(exc, from_exc):
---> 14         raise to_exc(exc) from exc
     15 raise

ConnectError: TLS/SSL connection has been closed (EOF) (_ssl.c:1131)

The above exception was the direct cause of the following exception:

ConnectError                              Traceback (most recent call last)
Cell In[24], line 20
     17     answer = response.choices[0].message
     18     return dict(answer)[\"content\"]
---> 20 print(get_title_from_text(client, prompt))

Cell In[24], line 4, in get_title_from_text(client, prompt)
      3 def get_title_from_text(client, prompt):
----> 4     response = client.chat.completions.create(
      5     model=\"glm-4\",
      6     messages=[
      7         {
      8             \"role\": \"user\",
      9             \"content\": prompt
     10         }
     11     ],
     12     top_p=0.7,
     13     temperature=0.9,
     14     stream=False,
     15     max_tokens=2000,)
     17     answer = response.choices[0].message
     18     return dict(answer)[\"content\"]

File d:\\miniconda\\envs\\research\\lib\\site-packages\\zhipuai\\api_resource\\chat\\completions.py:48, in Completions.create(self, model, request_id, do_sample, stream, temperature, top_p, max_tokens, seed, messages, stop, sensitive_word_check, tools, tool_choice, extra_headers, disable_strict_validation, timeout)
     46     _cast_type = object
     47     _stream_cls = StreamResponse[object]
---> 48 return self._post(
     49     \"/chat/completions\",
     50     body={
     51         \"model\": model,
     52         \"request_id\": request_id,
     53         \"temperature\": temperature,
     54         \"top_p\": top_p,
     55         \"do_sample\": do_sample,
     56         \"max_tokens\": max_tokens,
     57         \"seed\": seed,
     58         \"messages\": messages,
     59         \"stop\": stop,
     60         \"sensitive_word_check\": sensitive_word_check,
     61         \"stream\": stream,
     62         \"tools\": tools,
     63         \"tool_choice\": tool_choice,
     64     },
     65     options=make_user_request_input(
     66         extra_headers=extra_headers,
     67     ),
     68     cast_type=_cast_type,
     69     enable_stream=stream or False,
     70     stream_cls=_stream_cls,
     71 )

File d:\\miniconda\\envs\\research\\lib\\site-packages\\zhipuai\\core\\_http_client.py:292, in HttpClient.post(self, path, body, cast_type, options, files, enable_stream, stream_cls)
    278 def post(
    279         self,
    280         path: str,
   (...)
    287         stream_cls: type[StreamResponse[Any]] | None = None,
    288 ) -> ResponseT | StreamResponse:
    289     opts = ClientRequestParam.construct(method=\"post\", json_data=body, files=make_httpx_files(files), url=path,
    290                                         **options)
--> 292     return self.request(
    293         cast_type=cast_type, params=opts,
    294         enable_stream=enable_stream,
    295         stream_cls=stream_cls
    296     )

File d:\\miniconda\\envs\\research\\lib\\site-packages\\zhipuai\\core\\_http_client.py:254, in HttpClient.request(self, cast_type, params, enable_stream, stream_cls)
    251     raise self._make_status_error(err.response) from None
    253 except Exception as err:
--> 254     raise err
    256 return self._parse_response(
    257     cast_type=cast_type,
    258     request_param=params,
   (...)
    261     stream_cls=stream_cls,
    262 )

File d:\\miniconda\\envs\\research\\lib\\site-packages\\zhipuai\\core\\_http_client.py:241, in HttpClient.request(self, cast_type, params, enable_stream, stream_cls)
    238 request = self._prepare_request(params)
    240 try:
--> 241     response = self._client.send(
    242         request,
    243         stream=enable_stream,
    244     )
    245     response.raise_for_status()
    246 except httpx.TimeoutException as err:

File d:\\miniconda\\envs\\research\\lib\\site-packages\\httpx\\_client.py:914, in Client.send(self, request, stream, auth, follow_redirects)
    906 follow_redirects = (
    907     self.follow_redirects
    908     if isinstance(follow_redirects, UseClientDefault)
    909     else follow_redirects
    910 )
    912 auth = self._build_request_auth(request, auth)
--> 914 response = self._send_handling_auth(
    915     request,
    916     auth=auth,
    917     follow_redirects=follow_redirects,
    918     history=[],
    919 )
    920 try:
    921     if not stream:

File d:\\miniconda\\envs\\research\\lib\\site-packages\\httpx\\_client.py:942, in Client._send_handling_auth(self, request, auth, follow_redirects, history)
    939 request = next(auth_flow)
    941 while True:
--> 942     response = self._send_handling_redirects(
    943         request,
    944         follow_redirects=follow_redirects,
    945         history=history,
    946     )
    947     try:
    948         try:

File d:\\miniconda\\envs\\research\\lib\\site-packages\\httpx\\_client.py:979, in Client._send_handling_redirects(self, request, follow_redirects, history)
    976 for hook in self._event_hooks[\"request\"]:
    977     hook(request)
--> 979 response = self._send_single_request(request)
    980 try:
    981     for hook in self._event_hooks[\"response\"]:

File d:\\miniconda\\envs\\research\\lib\\site-packages\\httpx\\_client.py:1015, in Client._send_single_request(self, request)
   1010     raise RuntimeError(
   1011         \"Attempted to send an async request with a sync Client instance.\"
   1012     )
   1014 with request_context(request=request):
-> 1015     response = transport.handle_request(request)
   1017 assert isinstance(response.stream, SyncByteStream)
   1019 response.request = request

File d:\\miniconda\\envs\\research\\lib\\site-packages\\httpx\\_transports\\default.py:233, in HTTPTransport.handle_request(self, request)
    220 req = httpcore.Request(
    221     method=request.method,
    222     url=httpcore.URL(
   (...)
    230     extensions=request.extensions,
    231 )
    232 with map_httpcore_exceptions():
--> 233     resp = self._pool.handle_request(req)
    235 assert isinstance(resp.stream, typing.Iterable)
    237 return Response(
    238     status_code=resp.status,
    239     headers=resp.headers,
    240     stream=ResponseStream(resp.stream),
    241     extensions=resp.extensions,
    242 )

File d:\\miniconda\\envs\\research\\lib\\contextlib.py:131, in _GeneratorContextManager.__exit__(self, type, value, traceback)
    129     value = type()
    130 try:
--> 131     self.gen.throw(type, value, traceback)
    132 except StopIteration as exc:
    133     # Suppress StopIteration *unless* it's the same exception that
    134     # was passed to throw().  This prevents a StopIteration
    135     # raised inside the \"with\" statement from being suppressed.
    136     return exc is not value

File d:\\miniconda\\envs\\research\\lib\\site-packages\\httpx\\_transports\\default.py:86, in map_httpcore_exceptions()
     83     raise
     85 message = str(exc)
---> 86 raise mapped_exc(message) from exc

ConnectError: TLS/SSL connection has been closed (EOF) (_ssl.c:1131)"
}

2 尝试

2.1

有些blog说是urllib3版本高了的原因, 但是conda list查看之后urllib3 version==1.25.11应该没问题

2.2

改用http方式访问, 成功. 估计是httphttps的问题, 具体原理还不懂…(link)

import requests
import jwt
import time

def generate_token(apikey: str, exp_seconds: int):
    try:
        id, secret = apikey.split(".")
    except Exception as e:
        raise Exception("invalid apikey", e)

    payload = {
        "api_key": id,
        "exp": int(round(time.time() * 1000)) + exp_seconds * 1000,
        "timestamp": int(round(time.time() * 1000)),
    }

    return jwt.encode(
        payload,
        secret,
        algorithm="HS256",
        headers={"alg": "HS256", "sign_type": "SIGN"},
    )

api_key = ""  # 在此处补充API
token = generate_token(api_key, 60)
url = "https://open.bigmodel.cn/api/paas/v4/chat/completions"
headers = {
    "Content-Type": "application/json",
    "Authorization": f"Bearer {token}"
}

data = {
    "model": "glm-4",
    "messages": [
        {
            "role": "user",
            "content": "讲一个学弟打篮球的故事"
        }
    ],
    "max_tokens": 8192,
    "temperature": 0.8,
    "stream": False
}

response = requests.post(url, headers=headers, json=data)
ans = response.json()
ans["choices"][0]["message"]["content"]

标签:TLS,GLM,stream,zhipuai,self,request,File,._,response
From: https://blog.csdn.net/m0_46268825/article/details/136819659

相关文章

  • 本地部署 Langchain-Chatchat & ChatGLM
     一、模型&环境介绍#1.ChatGLM#github地址:https://github.com/THUDM模型地址:https://huggingface.co/THUDM2.m3e#模型地址:https://huggingface.co/moka-ai/m3e-base/3.text2vec#模型地址:https://huggingface.co/GanymedeNil/text2vec-large-chinese/4.Lang......
  • LLM大语言模型(七):部署ChatGLM3-6B并提供HTTP server能力
    目录HighLight部署ChatGLM3-6B并开启HTTPserver能力下载embedding模型bge-large-zh-v1.5HTTP接口问答示例LLM讲了个尴尬的笑话~HighLight将LLM服务化(如提供HTTPserver能力),才能在其上构建自己的应用。部署ChatGLM3-6B并开启HTTPserver能力下载embedding模型bge-l......
  • 聊聊ChatGLM-6B医疗数据微调
    转载请注明出处:https://www.cnblogs.com/zhiyong-ITNote/参考了多个医疗大模型,如扁鹊、灵心等,重新思考了下微调的方案以及数据集的格式;基于ChatGLM/其它LLM整合多种微调方法的非官方实现的框架,审视其数据集格式,以及调试效果,进行微调。最终基于liucongg/ChatGLM-Finetuning开......
  • Langchain-ChatGLM源码解读(一)-文档数据上传
    一、简介Langchain-ChatGLM 相信大家都不陌生,近几周计划出一个源码解读,先解锁langchain的一些基础用法。文档问答过程大概分为以下5部分,在Langchain中都有体现。上传解析文档文档向量化、存储文档召回query向量化文档问答今天主要讲langchain在上传解析文档时是怎么实......
  • Langchain-ChatGLM源码解读(二)-文档embedding以及构建faiss过程
    一、简介Langchain-ChatGLM 相信大家都不陌生,近几周计划出一个源码解读,先解锁langchain的一些基础用法。文档问答过程大概分为以下5部分,在Langchain中都有体现。上传解析文档文档向量化、存储文档召回query向量化文档问答今天主要讲langchain在文档embedding以及构建fa......
  • 容器集群实现多机多卡分布式微调大模型chatglm2-6b(deepseed + LLaMA + NCCL)
    环境信息2台物理机(187.135,187.136),各两张p4显卡,安装好docker=20.10.0,安装好nvidia驱动(driverversion=470.223.02,cudaversion=11.4)构造容器集群(dockerswarm187.136节点作为manager节点,187.135节点作为worker节点)[root@host-136~]#dockerswarminit--advertise-addr......
  • 线上跑chatGLM实践
    预先准备本笔记为参加DataWhale的线上学习——进行GLM、SD部署在完成驱动云平台注册后,免费获得168算力金,使用免费算力金进行ai平台部署在平台内进行部署https://platform.virtaicloud.com/项目服务器配置创建项目后,选择添加镜像在此选择PyTorch2.0.1Conda3.9的镜像通过......
  • ChatGLM3本机部署
    环境配置参照官方说明,创建虚拟python环境,并安装所需部署包。说明https://github.com/THUDM/ChatGLM3/blob/main/composite_demo/README.md本地模型加载1、先按照官方指引,将模型下载在本地。2、修改模型加载地址。MODEL_PATH和TOKENIZER_PATH,都修改注意:通过修改client.py......
  • ChatGLM3 源码解析(五)
    PrefixEncoder#根据前缀ID获取前缀嵌入#前缀嵌入将连接到分头之后的K和V上classPrefixEncoder(torch.nn.Module):"""Thetorch.nnmodeltoencodetheprefixInputshape:(batch-size,prefix-length)Outputshape:(batch-size,prefix-length......
  • 万字带你了解ChatGLM
    本文分享自华为云社区《【云驻共创】华为云之昇思MindSpore大模型专题(第二期)-第一课:ChatGLM》,作者:愚公搬代码。前言1.昇思MindSpore昇思MindSpore是华为公司推出的一款全场景AI计算框架。它提供了自动微分、分布式训练和推理、模型部署等功能,支持多种硬件平台,包括CPU、GPU和As......