点分治是树分治的一种形式,通常用来求满足某种要求的路径数量。
引入
有 \(n\) 个数,问是否存在一个 \(l, r\) 使得区间和为 \(k\),强行用分治做,可以将数组分成两半,递归后处理左边 \(l\) 右边 \(r\),然后就用前缀和加 \(map\) 加归并的并做就可以了。
思路
可以将这个思路放到树上,分为过当前点和不过当前点,不过当前点直接递归处理,过当前点可以往下找,然后用一个桶记录这种路径的长度,让找到的路径长度去匹配一个,然后发现这样子会炸,因为每次都要跑子树大小次,所以找重心跑,子树大小每次除 \(2\) 成功 \(O(nlogn)\)
code
#include <iostream>
#include <vector>
using namespace std;
const int MaxN = 50010;
int cnt[MaxN], sz[MaxN], st[MaxN], tot, n, k, ans;
vector<int> g[MaxN];
bool vis[MaxN];
int find_fatbigest(int x, int fa) {
sz[x] = 1;
int maxs = 0, res = -1;
for (int i : g[x]) {
if (i == fa || vis[i]) continue;
res = find_fatbigest(i, x);
if (res != -1) {
return res;
}
sz[x] += sz[i], maxs = max(maxs, sz[i]);
}
maxs = max(maxs, n - sz[x]);
if (maxs * 2 <= n) {
res = x;
sz[fa] = n - sz[x];
}
return res;
}
void G(int x, int fa, int sum) {
if (sum > k) {
return;
}
st[++tot] = sum;
ans += cnt[k - sum] + (sum == k);
for (int i : g[x]) {
if (i == fa || vis[i]) continue;
G(i, x, sum + 1);
}
}
void DFS(int x) {
for (int i : g[x]) {
if (vis[i]) continue;
int tmp = tot;
G(i, x, 1);
for (int i = tmp + 1; i <= tot; i++) {
cnt[st[i]]++;
}
}
for (int i = 1; i <= tot; i++) {
cnt[st[i]]--;
}
tot = 0;
vis[x] = 1;
for (int i : g[x]) {
if (vis[i]) continue;
n = sz[i];
DFS(find_fatbigest(i, x));
}
}
int main() {
cin >> n >> k;
for (int i = 1, u, v; i < n; i++) {
cin >> u >> v;
g[u].push_back(v);
g[v].push_back(u);
}
DFS(find_fatbigest(1, 0));
cout << ans << endl;
return 0;
}
P3806 【模板】点分治 1
考虑离线,将所有的 \(k\) 弄下来,然后统计答案是统计 \(m\) 次,因为 \(m\) 小的可怜,所以能过。
code
#include <iostream>
#include <vector>
using namespace std;
using pii = pair<int, int>;
const int MaxN = 1e4 + 10, MaxM = 1e8 + 10;
struct S {
bool cnt[MaxM];
int sz[MaxN], st[MaxN], k[MaxN], tot, n, m, ans;
vector<pii> g[MaxN];
bool vis[MaxN], flag[MaxM];
S() {
tot = n = m = ans = 0;
for (int i = 0; i < MaxN; i++) {
cnt[i] = sz[i] = st[i] = vis[i] = k[i] = 0;
}
}
int find_fatbigest(int x, int fa) {
sz[x] = 1;
int maxs = 0, res = -1;
for (auto i : g[x]) {
if (i.first == fa || vis[i.first]) continue;
res = find_fatbigest(i.first, x);
if (res != -1) {
return res;
}
sz[x] += sz[i.first], maxs = max(maxs, sz[i.first]);
}
maxs = max(maxs, n - sz[x]);
if (maxs * 2 <= n) {
res = x;
sz[fa] = n - sz[x];
}
return res;
}
void G(int x, int fa, int sum) {
st[++tot] = sum;
for (int i = 1; i <= m; i++) {
if (sum <= k[i]) {
flag[k[i]] |= cnt[k[i] - sum] + (sum == k[i]);
}
}
for (auto i : g[x]) {
if (i.first == fa || vis[i.first]) continue;
G(i.first, x, sum + i.second);
}
}
void DFS(int x) {
for (auto i : g[x]) {
if (vis[i.first]) continue;
int tmp = tot;
G(i.first, x, i.second);
for (int i = tmp + 1; i <= tot; i++) {
cnt[st[i]] = 1;
}
}
for (int i = 1; i <= tot; i++) {
cnt[st[i]] = 0;
}
tot = 0;
vis[x] = 1;
for (auto i : g[x]) {
if (vis[i.first]) continue;
n = sz[i.first];
DFS(find_fatbigest(i.first, x));
}
}
void solve(int len, int q, int x[], int a[][3]) {
n = len, m = q;
for (int i = 1; i <= m; i++) {
k[i] = x[i];
}
for (int i = 1; i < n; i++) {
g[a[i][0]].push_back({a[i][1], a[i][2]});
g[a[i][1]].push_back({a[i][0], a[i][2]});
}
DFS(find_fatbigest(1, 0));
}
};
int a[MaxN][3], k[MaxN], n, m;
S t;
int main() {
ios::sync_with_stdio(0), cin.tie(0);
cin >> n >> m;
for (int i = 1; i < n; i++) {
cin >> a[i][0] >> a[i][1] >> a[i][2];
}
for (int i = 1; i <= m; i++) {
cin >> k[i];
}
t.solve(n, m, k, a);
for (int i = 1; i <= m; i++) {
cout << (t.flag[k[i]] ? "AYE" : "NAY") << '\n';
}
return 0;
}
标签:sz,int,res,分治,vis,MaxN,maxs
From: https://www.cnblogs.com/ybtarr/p/18063155