首页 > 其他分享 >CF1264D2 Beautiful Bracket Sequence (hard version) 题解

CF1264D2 Beautiful Bracket Sequence (hard version) 题解

时间:2024-03-09 16:44:26浏览次数:35  
标签:Beautiful 字符 题解 sum 个数 version choose aligned

括号深度的本质,其实就是删除若干个字符以后使得左边一半全是 (,右边一半全是 ),最终 ( 的个数的最大值。

那么就一定存在一个位置使得在这个位置以及之前的字符中 ( 的个数等于这个字符后 ) 的个数。

考虑枚举这个位置,记它左边的 ( 的个数为 \(a\)、? 的个数为 \(x\),右边的 ) 的个数为 \(b\)、? 的个数为 \(y\),那么易得这个位置对答案的贡献为:

\[\sum_{i=0}^x(i+a){x\choose i}{y\choose i+a-b} \]

然后就可以通过这题的弱化版了。考虑把括号拆开,两个分别算贡献。对于第一部分:

\[\begin{aligned} &\sum_{i=0}^xi{x\choose i}{y\choose i+a-b}\\ =&\sum_{i=0}^xx{x-1\choose i-1}{y\choose i+a-b}\\ =&x\sum_{i=0}^x{x-1\choose i-1}{y\choose y-a+b-i}\\ =&x{x+y-1\choose y-a+b-1} \end{aligned} \]

对于第二部分:

\[\begin{aligned} &\sum_{i=0}^xa{x\choose i}{y\choose i+a-b}\\ =&a\sum_{i=0}^x{x\choose i}{y\choose y-a+b-i}\\ =&a{x+y\choose y-a+b} \end{aligned} \]

最后两个求一下和就做完了,时间复杂度 \(\mathcal{O}(n)\)。

标签:Beautiful,字符,题解,sum,个数,version,choose,aligned
From: https://www.cnblogs.com/zifanoi/p/18062927

相关文章

  • [CF696B] Puzzles 题解
    首先很好想到要用树形\(dp\)。然后设\(dp_i\)为遍历到第\(i\)个点的期望时间,\(sz_i\)代表\(i\)的子树大小。发现有转移方程:\[dp_i=dp_{fa_i}+1+\sum\limits_{j\infa_i且j\nei}sz_j\timesq\]其中\(q\)为一个常数,代表在排列中\(j\)在\(i\)前的概率。很容易发......
  • 无聊的数列[题解]
    无聊的数列[link1][link2]题目大意给定一个数列\(A\)有两种操作:将数列中\(A_i\)(\(L\leqi\leqR\))加上一个等差数列(首项D公差K)查询数列中第P位数区间加上一个等差数列可以用差分来解决例原序列:000000差分序列:000000等差序列:13579(首项1......
  • 课堂练习 最大值 原题链接+题解
    题目可以去我的洛谷题库看:https://www.luogu.com.cn/problem/U412348(带数据,真难出)题解考虑两种解题方式。由于题目范围较小,可以check+暴力,如果范围大一点,可以check+二分答案。先讲check函数,小学四年级数学书说了,这种问题也被它叫做“铺地砖”问题,计算剪出的正方形数量的方......
  • 一本通 1270 混合背包 题解
    是在hydro上做的,墙裂推荐hydro的一本通题库!链接是:https://hydro.ac/d/ybttk/p/T1270。分析一下,可以分类讨论,处理的时候,零一背包(\(p_i=1\))一个,完全背包(\(p_i=0\))一个,多重背包(\(p_i>1\))一个,状态转移方程不用列的,直接去抄模板就可以啦~代码是这样的捏:#include<bits/st......
  • P6583 回首过去 题解
    P6583回首过去题解题目传送门好题。更新(2023-12-05):把代码和$\LaTeX$改得更好看了。题意简述给定正整数$n$,求出有序整数对$(x,y)$的个数,满足$1\lex,y\len$且$\dfracxy$可以表示为十进制有限小数。$1\len\le10^{12}$。前置知识数论分块解法Subtas......
  • CF1846D Rudolph and Christmas Tree 题解
    因为\(n\)个三角形有重叠部分,所以我们可以倒序处理每个三角形,并对其进行分类讨论:若当前三角形编号为\(n\),则直接将总面积加上\(\dfrac{d\timesh}{2}\)。否则,再次分出两种情况:若当前三角形的\(y_i+h>y_{i+1}\)(即编号为\(i,i+1\)的三角形有重叠),则如下图所示:......
  • CF387B George and Round 题解
    考虑采用双指针法解决此题。首先需要对\(a,b\)数组排序,并且维护两个指针\(l,r\),分别指向\(a,b\)两个数组中的元素。接着循环移动\(r\)指针,每次都尝试匹配\(a_l\)和\(b_r\):若\(a_l\leb_r\),则说明\(a_l=b_r\)或可以采用减少\(b_r\)的方式使\(a_l=b_r\),这......
  • P3670 [USACO17OPEN] Bovine Genomics S 题解
    题意给定\(2\)组字符串,每组\(n\)个,每个字符串包含\(m\)个字符。我们称一个三元组\((i,j,k)\)是合法的,当且仅当第二组的每个字符串中下标为\((i,j,k)\)的字符拼成的字符串与第一组的每个字符串中下标为\((i,j,k)\)的字符拼成的字符串均不相等。现在需要你对于给定的......
  • CF99B Help Chef Gerasim 题解
    分别对三种情况进行分类讨论。第一种情况:显然,若\(\sum^{n}_{i=1}a_i\bmodn\neq0\),则输出\(\texttt{Unrecoverableconfiguration.}\);同时,我们遍历\(a_{1\simn}\),若存在两个以上的\(a_i\)满足\(a_i\neq\sum^{n}_{i=1}a_i\divn\),则也输出\(\texttt{Unreco......
  • P10217 [省选联考 2024] 季风题解
    考场上没写出来,火大,实际上这题放校内%你赛我肯定写的出来,可惜这是省选。实际上这题不难,主要是观察性质,接着拆柿子,然后就是有点难写,要写得好看有点考验代码构建能力和数学能力。我们考虑原题的每对\((x,y)\)都要满足\(|x|+|y|\lek\)而我们可以知道后面应该填的\((x,y)\)如......