隐零点的多次转化
已知函数\(f(x)=e^x-a\ln(x+1)\)
(1)若\(f(x)\)的最值为\(a\),求\(a\)
(2)当\(a=\dfrac{1}{e^n}(n\in\mathbb{N})\)时,证明:\(f(x)\geq (n+1)a\)
解
(1) 由费马定理,连续函数在开区间内取最值,一定是导函数为\(0\)的点
\(f^{\prime}(x)=e^x-\dfrac{a}{x+1}=0\),设其零点为\(x_0\),则
\(a=e^{x_0}(x_0+1)\),此时\(f(x)\)的最值为
\(f(x_0)=e^{x_0}-e^{x_0}(x_0+1)\ln(x_0+1)=a=e^{x_0}(x_0+1)\)
即\(x_0+(x_0+1)\ln(x_0+1)=0\)
记\(h(x)=x_0+(x_0+1)\ln(x_0+1)\),\(h^{\prime}(x)=-\ln(1+x)\)
即\(\dfrac{x}{x+1}+\ln(x+1)=0\)
即\(\ln(x+1)-\dfrac{1}{x+1}+1=0\),单调递增
从而只有一个零点\(x_0=0\)
则\(a=1\)
(2)
由(1)\(f(x)\)有最小值\(f(x_0)=e^{x_0}-a\ln(x_0+1)\)
\(a=e^{x_0}(x_0+1)\),即\(e^{x_0}=\dfrac{a}{x_0+1}\)
而\(a=\dfrac{1}{e^n}\),即\(e^{-n-x_0}=(x_0+1)\),即\(n+x_0=-\ln(x_0+1)\)
则\(f(x_0)=\dfrac{a}{x_0+1}+a(n+x_0)=\dfrac{a}{x_0+1}+a(x_0+1)+a(n-1)\)
从而\(f(x_0)\geq 2a+a(n-1)=a(n+1)\)
标签:geq,导数,ln,dfrac,每日,75,零点,最值 From: https://www.cnblogs.com/manxinwu/p/18053163