题意:
给定一个 \(n\) 面骰,长度 \(n\) 的数组 \(a\) 和一个初始为 \(0\) 的变量 \(x\)。
每次投掷骰子,等概率获得 \(1 \sim n\) 中的一个数 \(p\)。若 \(p\le x\),结束;否则 \(x\leftarrow p\) 且总收获 \(S\leftarrow S+a_p\)。
求期望值。
其实期望 \(S=\sum a_i\times p_i\),其中 \(p_i\) 是投掷过程中出现 \(i\) 的概率。
初值 \(p_0=1\)。\(p_i=\displaystyle\dfrac{1}{n}\sum_{j=0}^{i-1} p_j\)。
有一个机器人,初始在坐标原点,面向右侧。现在给定序列 \(a\),按顺序执行操作:第 \(i\) 次操作时令机器人向某侧转 \(90\degree\) 后再前进 \(a_i\) 个单位长度。
操作个数 \(n\le 80\)。
你可以任意安排每次操作前机器人是向左转还是向右转。问最后能否使机器人到达 \((X,Y)\)?判断可行,并且输出方案。
发现奇数编号的操作和偶数编号的操作可以分开考虑。原问题等价于:\(n\le 40\) 个数,可以任意改变符号,使得这些数的和为 \(X\)。
可以用 meet-in-middle。
经典最小割模型。
标签:le,leftarrow,sum,机器人,ABC,326,操作 From: https://www.cnblogs.com/FLY-lai/p/18012027