首页 > 其他分享 >【iOS ARKit】3D人体姿态估计实例

【iOS ARKit】3D人体姿态估计实例

时间:2024-02-04 16:22:05浏览次数:48  
标签:骨骼 检测 关节点 iOS ARKit ARBodyAnchor 3D 人体

​     与2D人体姿态检测一样,在ARKit 中,我们不必关心底层的人体骨骼关节点检测算法,也不必自己去调用这些算法,在运行使用 ARBodyTrackingConfiguration 配置的 ARSession 之后,基于摄像头图像的3D人体姿态估计任务也会启动,我们可以通过 session(_ session: ARSession, didUpdate anchors:[ARAnchor])代理方法直接获取检测到的ARBodyAnchor。

     在 ARKit 中,与检测2D图像或者 3D物体一样,在检测到3D 人体后会生成一个ARBodyAnchor 用于在现实世界和虚拟空间之间建立关联关系,绑定虚拟元素到检测的人体上。在获取 ARBodyAnchor 后,就可以通过 ARBodyAnchor. skeleton. definition. jointNames 获取所有3D人体骨骼关节点名称,通过ARBodyAnchor. skeleton. modelTransform(for:)方法取指定关节点相对 ARBodyAnchor 的位置姿态信息,通过 ARBodyAnchor. skeleton. localTransform(for: ARSkeleton. JointName)方法获取指定关节相对于其父节点的位置姿态信息。示例代码如下代码所示。

 
     

     代码演示了如何获取 ARKit 生成的 ARBodyAnchor;如何获取3D人体所有骨骼关节点名字集合,以及各关节点及其父节点索引;如何利用关节点名字获取该关节点相对 ARBodyAnchor 的位置信息。捕捉人体3D 姿态信息后除了进行运动姿态分析最重要的用途就是驱动3D 模型,在理解ARKit 提供的3D人体骨骼关节点数据结构信息及关联关系之后,我们就可以利用这些数据实时驱动三维模型,基本思路如下:

    (1)建立一个与关节点表一致,拥有相同人体骨骼关节点的三维模型。

    (2) 开启 3D人体姿态估计功能。

    (3)建立 ARKit 3D 人体姿态估计骨骼关节点与三维模型骨骼关节点的对应关系,并利用3D人体姿态估计骨骼关节点数据驱动三维模型骨骼关节点。

     如前文所述,我们可以从生成的 ARBodyAnchor 中获取所有骨骼关节点的位置信息,利用这些位息,就可以将模型关节点与检测到的人体骨骼关节点关联起来。为了简单起见,下面我们演示利用检的人体 ARBodyAnchor,在人眼处绘制两个球体。代码如下所示。

 

      在代码中,我们首先创建了两个球体,代表人体的左右两只眼睛,然后在 session (: didUipdateanchors:)方法中检查 ARBodyAnchor,利用检测到的3D人体骨骼左右眼关节点(left_eye_joint 和 righ.eye_joint)信息设置并实时更新两个球体的位置及方向。需要注意的是,在实际使用人体骨骼关节点位置信息时,通过 modelTransform(for:)方法获取的关节点位置是相对于 ARBodyAnchor的位置,并不是世界坐标空间中的坐标。在上述代码中,获取某特定关节点位置信息我们使用了 modelTransform(for:)方法,通过关节点名字获取该关节点位置数据,因为关节点的位置数据存储在数组中,使用bodyAnchor.skeleton.jointModelTransforms[index]的方式效率更高,如左眼索引为54,直接将 54作为参数传递即可以获取人体左眼位置数据。上节表列出了所有91 个骨骼关节点的索引值,可以直接使用。运行该示例,在ARKit 检测到人体时,会在人体双眼处放置两个球体,效果如图所示。

      采用同样的方法,可以将获取的所有人体3D骨骼关节点数据绑定到3D模型中的骨骼关节点上,并以此来驱动3D模型的运动,这是以手工的方式绑定检测到的骨骼关节点与模型。在 RealityKit 中,使用了一个名为 BodyTrackedEntity 的实体类描述带骨骼绑定的人体模型,如果模型骨骼关节点命名与相互之间的关系与上节表所示一致,也可以直接通过使用 Body TrackedEntity.joint Transforms [3] = Transform (matrix: body Anchor. skeleton. model Transtorm (for: ARSkeleton. JointName.head)!)语句将检测到的人体关节点位置信息赋给人体模型,从而达到驱动模型的目的。

      ARKit检测到的3D人体骨骼关节点有91个,采用人工绑定骨骼关节点的工作量很大且很容易出错,为此,RealityKit 会自动检测场景中加载的 BodyTrackedEntity 实体对象,并尝试自动执行将检测到的人体骨骼关节点与模型骨骼关节点匹配,如果模型骨骼关节点命名和相互之间的关系与表7-3所示一致,则无须人工手动绑定,RealityKit会自动进行关节点绑定。因此,在模型骨骼完全符合要求的情况下,利用ARKit检测到的3D人体关节点驱动模型变得格外简单,只需要加载模型为 BodyTrackedEntity 实体对象,并添加到 AnchorEntity 中。代码如下所示。

      在代码中,我们首先使用异步的方式加载3D人体模型,并对模型中的骨骼信息进行检查,如果模型骨骼都符合要求则生成可供驱动的3D 模型对象,然后在 session(:didUpdate anchors:)方法中实时更新模型的姿态信息。上述代码对 robotAnchor 位置进行了偏移处理,这是因为我们获取的ARBodyAnchor 所在位置为检测到的3D人体关节点的Root 位置,如果不进行偏移,则模型与人体会重合显示,代码中我们将模型向X轴负方向移动了 1m(ARBodyAnchor 位置三维空间中的位置,可以向任何方向偏移),我们也可以不加这个偏移。编译运行代码,将设备摄像头对准真实人体,在检测到人体时,加载一个机器人,并且人体姿态可以实时驱动机器人模型同步运动,效果如下图所示。

​      

   经过测试,目前 ARKit 可以正确检测追踪人体正面或背面站立姿态,对坐姿也能比较好地跟踪,但不能检测跟踪倒立、俯卧姿态。并且我们在测试中发现,实时跟踪一个真实人体与跟踪显示器上视频中的人体跟踪精度似乎没有区别,使用iPad Pro 与iPhone 跟踪精度也似乎没有区别。

      在人体尺寸估计方面,使用纯图像处理时,虚拟模型有时会出现跳跃或者突然改变大小的现象。在配备了 LiDAR 传感器的设备上,由于可以直接从 LiDAR 传感器中采集到人体深度信息,因此在人体尺寸估计方面有很大提升,相比使用纯图像方式,估计的尺寸精度更高,对虚拟模型的大小控制更合理。

      从本节与2D检测实例可以看到,在运行 ARSession 进行人体检测跟踪时,将 ARBody TrackingConfiguration.frameSemantics 设置为 bodyDetection(即默认值),既可以检测2D人体骨骼关节点,也可以检测3D人体骨骼关节点,区别是检测的2D 人体骨骼关节点是在屏幕空间中,而检测的3D人体骨骼关节点是在世界空间中,因此,我们一般会在 session(:didUpdate frame:)代理方法中处理2D人体检测,在 session(:didUpdate 提示也可以在 session(:didUpdate anchors:)代理方法中处理2D人体检测,在使用 session(:didUpdateanchors:)方法处理2D人体检测时,由于获取的ARBodyAnchor 是在世界空间中,因此需要按照 3D人体检测的步骤进行处理。

具体代码地址:https://github.com/duzhaoquan/ARkitDemo.git

标签:骨骼,检测,关节点,iOS,ARKit,ARBodyAnchor,3D,人体
From: https://www.cnblogs.com/duzhaoquan/p/18006451

相关文章

  • 【iOS ARKit】3D 人体姿态估计
       与基于屏幕空间的2D人体姿态估计不同,3D人体姿态估计是尝试还原人体在三维世界中的形状与姿态,包括深度信息。绝大多数的现有3D人体姿态估计方法依赖2D人体姿态估计,通过获取2D人体姿态后再构建神经网络算法,实现从2D到3D人体姿态的映射。   在ARKit中,由于是采......
  • 探索3D可视化在航空领域的无限可能
    随着科技的日新月异,我们生活的方方面面都在发生着深刻的变化。而在航空领域,3D可视化技术正在引领新的革命。它不仅为飞行员提供了一种全新的视角,更在保障飞行安全、提高飞行效率方面发挥着不可替代的作用。 在传统的空中加油中,飞行员与加油机员之间的沟通主要依靠手势和无线电......
  • 跟着思兼学习3D打印 Klipper 固件系列文章合集
    (01)XY电机方向调整新方法|使用force_move快速校准CoreXY电机方向(02)打印平台中心校准与调整|校准打印平台中心,最大化打印尺寸(03-1)加速度计与输入整形器|1,推荐。固件烧录,查找Klipper引脚定义,加速度计采样(03-2)番外1-自定义stm32f103bootloader|2编译st......
  • iOS应用提交上架的最新流程
    摘要本篇博客介绍了iOS应用程序上架的最新流程。包括上架基本需求资料、证书的创建和使用、测试设备的添加、描述文件的创建、打包、审核等步骤。 引言在开发完iOS应用程序后,我们需要将其提交到AppStore上架。然而,随着技术的不断发展,上架流程也会不断更新。本文将介绍最新......
  • [USACO23DEC] Bovine Acrobatics S
    这题看起来无从下手,我们没法立即就找到多项式复杂度内的做法。故而考虑贪心。容易想到排序后处理。考虑两种排序方式:按体重排序按牛的数量排序显然第一种相比于第二种更可能是这道题的解法。尝试按体重从小到大处理,每次把新的一种体重的牛加进去。加到怎样的序列合适呢?我们......
  • BEVENet:实时BEV3D检测网络
    仅使用卷积!BEVENet:实时BEV3D检测网络(主打实时性+高精度)BEV空间中的3D检测已成为自动驾驶领域中非常流行的方法,各大公司都在抢占使用。尽管与透视法相比,BEV已有较大改进,但在现实世界的自动驾驶汽车中部署基于BEV的技术仍然具有挑战性。这主要是由于它们依赖于基于视觉transformer(V......
  • nodejs+axios调用第三方接口返回数据给前端
    nodejsaxios调用第三方接口返回数据给前端后端koalas前端vue0.内容和前后端框架本项目为前端执行时间段和航班,后端利用指定信息查询第三方航班信息接口并返回给前端。1.koajs+axiosapp.js文件中引入koa、添加初始化中间件并启动项目。1.1引入koa并添加初始化bodyPars......
  • 【解题报告】CodeForces523D:Statistics of Recompressing Videos
    CF523D解题报告CF523D先上结果:前两次语言选错了,编译一直不过(做这题是因为集训老师让我做我就做了,要不然我都快忘了我有CF账号了(思路省流:STL大法开一个小根堆存目前正在运行的服务器(也可以大根堆,但是存时间进去的时候存负的),如果有空机就直接处理,这个视频处理完的时间就......
  • 「效果图渲染」效果图与3D影视动画渲染区别
    效果图和3D动画渲染是图像渲染技术在各自领域的应用。效果图渲染常见于建造、室内布局以及产品设计等专业领域,其中对图像的准确性与细致程度有着较高的标准。相较之下,3D动画渲染更广泛地被运用于制作电影、电视节目、电子游戏和广告等娱乐媒介,不仅要处理更为动态和复杂的场景,还要......
  • 【iOS ARKit】2D肢体动作捕捉
       人体肢体动作捕捉在动漫影视制作、游戏CG动画、实时模型驱动中有着广泛的应用,利用ARKit,无须额外的硬件设备即可实现2D和3D人体一系列关节和骨骼的动态捕捉,由于移动AR的便携性及低成本,必将促进相关产业的发展。ARBodyTrackingConfiguration   ARKit配置类AR......